{"title":"本体群体神经网络模型的训练技术","authors":"P. Lomov, M. Malozemova","doi":"10.37614/2307-5252.2021.5.12.016","DOIUrl":null,"url":null,"abstract":"The paper considers one of the subtasks of ontology learning - the ontology population, which implies the extension of existing ontology by new instances without changing the structure of its classes and relations. A brief overview of existing ontology learning approaches is presented. A highly automated technology for ontology population based on training and application of the neural-network language model to identify and extract potential instances of ontology classes from domain texts is proposed. The main stages of its application, as well as the results of its experimental evaluation and the main directions of its further improvement are considered.","PeriodicalId":438304,"journal":{"name":"Transaction Kola Science Centre","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technology of training a neural-network model for ontology population\",\"authors\":\"P. Lomov, M. Malozemova\",\"doi\":\"10.37614/2307-5252.2021.5.12.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers one of the subtasks of ontology learning - the ontology population, which implies the extension of existing ontology by new instances without changing the structure of its classes and relations. A brief overview of existing ontology learning approaches is presented. A highly automated technology for ontology population based on training and application of the neural-network language model to identify and extract potential instances of ontology classes from domain texts is proposed. The main stages of its application, as well as the results of its experimental evaluation and the main directions of its further improvement are considered.\",\"PeriodicalId\":438304,\"journal\":{\"name\":\"Transaction Kola Science Centre\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transaction Kola Science Centre\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37614/2307-5252.2021.5.12.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transaction Kola Science Centre","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37614/2307-5252.2021.5.12.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Technology of training a neural-network model for ontology population
The paper considers one of the subtasks of ontology learning - the ontology population, which implies the extension of existing ontology by new instances without changing the structure of its classes and relations. A brief overview of existing ontology learning approaches is presented. A highly automated technology for ontology population based on training and application of the neural-network language model to identify and extract potential instances of ontology classes from domain texts is proposed. The main stages of its application, as well as the results of its experimental evaluation and the main directions of its further improvement are considered.