调度太阳能光伏发电的电池与超级电容器混合储能系统成本优化

Pranoy Roy, Jiangbiao He, Y. Liao
{"title":"调度太阳能光伏发电的电池与超级电容器混合储能系统成本优化","authors":"Pranoy Roy, Jiangbiao He, Y. Liao","doi":"10.1109/ECCE44975.2020.9235797","DOIUrl":null,"url":null,"abstract":"This paper aims to optimize the cost of a battery and supercapacitor hybrid energy storage system (HESS) for dispatching solar power at one-hour increments for an entire day for megawatt-scale grid-connected photovoltaic (PV) arrays. A low-pass filter (LPF) is utilized to allocate the power between a battery and a supercapacitor (SC). The cost optimization of the HESS is calculated based on the time constant of the LPF through extensive simulations in a MATLAB/SIMULINK environment. Curve fitting and Particle Swarm Optimization (PSO) techniques are implemented to seek the optimum value of the LPF time constant. A fuzzy logic controller as a function of battery state of charge is developed to estimate the grid reference power for each one-hour dispatching period. Since the ambient temperature and PV cell temperature are different, this study also considers the relationship between them and presents their effects on energy storage cost calculations.","PeriodicalId":433712,"journal":{"name":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost Optimization of Battery and Supercapacitor Hybrid Energy Storage System for Dispatching Solar PV Power\",\"authors\":\"Pranoy Roy, Jiangbiao He, Y. Liao\",\"doi\":\"10.1109/ECCE44975.2020.9235797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to optimize the cost of a battery and supercapacitor hybrid energy storage system (HESS) for dispatching solar power at one-hour increments for an entire day for megawatt-scale grid-connected photovoltaic (PV) arrays. A low-pass filter (LPF) is utilized to allocate the power between a battery and a supercapacitor (SC). The cost optimization of the HESS is calculated based on the time constant of the LPF through extensive simulations in a MATLAB/SIMULINK environment. Curve fitting and Particle Swarm Optimization (PSO) techniques are implemented to seek the optimum value of the LPF time constant. A fuzzy logic controller as a function of battery state of charge is developed to estimate the grid reference power for each one-hour dispatching period. Since the ambient temperature and PV cell temperature are different, this study also considers the relationship between them and presents their effects on energy storage cost calculations.\",\"PeriodicalId\":433712,\"journal\":{\"name\":\"2020 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE44975.2020.9235797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE44975.2020.9235797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在优化电池和超级电容器混合储能系统(HESS)的成本,该系统用于兆瓦级并网光伏(PV)阵列全天以1小时增量调度太阳能。利用低通滤波器(LPF)在电池和超级电容器(SC)之间分配功率。通过在MATLAB/SIMULINK环境下的大量仿真,计算了基于LPF时间常数的HESS成本优化。采用曲线拟合和粒子群优化(PSO)技术寻求LPF时间常数的最优值。提出了一种基于电池充电状态的模糊控制器,用于估计每一小时调度时段的电网参考功率。由于环境温度和光伏电池温度不同,本研究也考虑了它们之间的关系,并给出了它们对储能成本计算的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost Optimization of Battery and Supercapacitor Hybrid Energy Storage System for Dispatching Solar PV Power
This paper aims to optimize the cost of a battery and supercapacitor hybrid energy storage system (HESS) for dispatching solar power at one-hour increments for an entire day for megawatt-scale grid-connected photovoltaic (PV) arrays. A low-pass filter (LPF) is utilized to allocate the power between a battery and a supercapacitor (SC). The cost optimization of the HESS is calculated based on the time constant of the LPF through extensive simulations in a MATLAB/SIMULINK environment. Curve fitting and Particle Swarm Optimization (PSO) techniques are implemented to seek the optimum value of the LPF time constant. A fuzzy logic controller as a function of battery state of charge is developed to estimate the grid reference power for each one-hour dispatching period. Since the ambient temperature and PV cell temperature are different, this study also considers the relationship between them and presents their effects on energy storage cost calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信