允许半对称非度量连接的$N(\kappa)-$接触度量流形上的射影曲率张量

Mustafa Altın
{"title":"允许半对称非度量连接的$N(\\kappa)-$接触度量流形上的射影曲率张量","authors":"Mustafa Altın","doi":"10.33401/fujma.733415","DOIUrl":null,"url":null,"abstract":"The object of the present paper is to classify $N(\\kappa)$-contact metric manifolds admitting the semi-symmetric non-metric connection with certain curvature conditions the projectively curvature tensor. We studied projective flat, $\\xi- $projectively flat, $\\phi- $projectively flat $N(\\kappa )$-contact metric manifolds admitting the semi-symmetric non-metric connection. Also, we examine such manifolds under some local symmetry conditions related to projective curvature tensor. ","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Projective Curvature Tensor on $N(\\\\kappa)-$Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection\",\"authors\":\"Mustafa Altın\",\"doi\":\"10.33401/fujma.733415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of the present paper is to classify $N(\\\\kappa)$-contact metric manifolds admitting the semi-symmetric non-metric connection with certain curvature conditions the projectively curvature tensor. We studied projective flat, $\\\\xi- $projectively flat, $\\\\phi- $projectively flat $N(\\\\kappa )$-contact metric manifolds admitting the semi-symmetric non-metric connection. Also, we examine such manifolds under some local symmetry conditions related to projective curvature tensor. \",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.733415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.733415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是将具有一定曲率条件的半对称非度量连接的$N(\kappa)$ -接触度量流形分类为射影曲率张量。我们研究了射影平面,$\xi- $射影平面,$\phi- $射影平面$N(\kappa )$ -接触度量流形允许半对称非度量连接。此外,我们还研究了与射影曲率张量有关的局部对称条件下的流形。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projective Curvature Tensor on $N(\kappa)-$Contact Metric Manifold Admitting Semi-Symmetric Non-Metric Connection
The object of the present paper is to classify $N(\kappa)$-contact metric manifolds admitting the semi-symmetric non-metric connection with certain curvature conditions the projectively curvature tensor. We studied projective flat, $\xi- $projectively flat, $\phi- $projectively flat $N(\kappa )$-contact metric manifolds admitting the semi-symmetric non-metric connection. Also, we examine such manifolds under some local symmetry conditions related to projective curvature tensor. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信