通过数据驱动的自然语言交互促进物理计算机系统设计

Taizhou Chen
{"title":"通过数据驱动的自然语言交互促进物理计算机系统设计","authors":"Taizhou Chen","doi":"10.1145/3334480.3381442","DOIUrl":null,"url":null,"abstract":"Designing and creating physical computing system can be challenging for novice user.In this paper, we present FritzBot, an intelligent conversational agent offering assistance for novice users on constructing physical-computing systems through natural-language interaction. We create a lexical circuit-event database based on 152 student reports from the undergraduate physical-computing course in a local art school. The LSTM-CRF network of FrzitBot is trained on that database, and is able to extract the input and the output events from the user's description, and generate the circuit and the code along with the construction guidelines. A user study shows that FritzBot can significantly reduce the construction effort and time spent for novice users on physical-computing task.","PeriodicalId":118996,"journal":{"name":"Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facilitating Physical-Computer System Design through Data-Driven Natural-Language Interaction\",\"authors\":\"Taizhou Chen\",\"doi\":\"10.1145/3334480.3381442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing and creating physical computing system can be challenging for novice user.In this paper, we present FritzBot, an intelligent conversational agent offering assistance for novice users on constructing physical-computing systems through natural-language interaction. We create a lexical circuit-event database based on 152 student reports from the undergraduate physical-computing course in a local art school. The LSTM-CRF network of FrzitBot is trained on that database, and is able to extract the input and the output events from the user's description, and generate the circuit and the code along with the construction guidelines. A user study shows that FritzBot can significantly reduce the construction effort and time spent for novice users on physical-computing task.\",\"PeriodicalId\":118996,\"journal\":{\"name\":\"Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3334480.3381442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3334480.3381442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计和创建物理计算系统对于新手来说是一项挑战。在本文中,我们提出了FritzBot,一个智能会话代理,通过自然语言交互帮助新手用户构建物理计算系统。我们基于当地一所艺术学校的152名本科生物理计算课程的学生报告创建了一个词汇电路事件数据库。FrzitBot的LSTM-CRF网络在该数据库上进行了训练,能够从用户的描述中提取输入和输出事件,并生成电路和代码以及构建指南。一项用户研究表明,FritzBot可以显著减少新手用户在物理计算任务上花费的构建工作量和时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facilitating Physical-Computer System Design through Data-Driven Natural-Language Interaction
Designing and creating physical computing system can be challenging for novice user.In this paper, we present FritzBot, an intelligent conversational agent offering assistance for novice users on constructing physical-computing systems through natural-language interaction. We create a lexical circuit-event database based on 152 student reports from the undergraduate physical-computing course in a local art school. The LSTM-CRF network of FrzitBot is trained on that database, and is able to extract the input and the output events from the user's description, and generate the circuit and the code along with the construction guidelines. A user study shows that FritzBot can significantly reduce the construction effort and time spent for novice users on physical-computing task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信