schlicht函数类的线性极值问题

E. Michel
{"title":"schlicht函数类的线性极值问题","authors":"E. Michel","doi":"10.1080/02781070500277656","DOIUrl":null,"url":null,"abstract":"The form of the Schiffer differential equation puts severe restrictions on the class of functions that can occur as extremal functions for arbitrary coefficient-functionals of finite degree. Theorem 1 characterizes the algebraic extremal functions for coefficient-functionals of finite degree. Furthermore it is shown that the extremal function either is an algebraic function or it must possess a non-isolated singularity, or must have a transcendental branch-point. The results are closely related to the Malmquist-Yosida theorems. However Nevanlinna's Theory of Value Distribution is not the mainly used tool but the special form of the Schiffer differential equation and the multiplicity of certain values together with the Great Picard Theorem are exploited.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On linear extremal problems in the class of schlicht functions\",\"authors\":\"E. Michel\",\"doi\":\"10.1080/02781070500277656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The form of the Schiffer differential equation puts severe restrictions on the class of functions that can occur as extremal functions for arbitrary coefficient-functionals of finite degree. Theorem 1 characterizes the algebraic extremal functions for coefficient-functionals of finite degree. Furthermore it is shown that the extremal function either is an algebraic function or it must possess a non-isolated singularity, or must have a transcendental branch-point. The results are closely related to the Malmquist-Yosida theorems. However Nevanlinna's Theory of Value Distribution is not the mainly used tool but the special form of the Schiffer differential equation and the multiplicity of certain values together with the Great Picard Theorem are exploited.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070500277656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500277656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

希弗微分方程的形式对任意有限次系数泛函的极值函数有严格的限制。定理1刻画了有限次系数泛函的代数极值函数。进一步证明了极值函数要么是代数函数,要么必须具有非孤立奇点,要么必须具有超越分支点。结果与Malmquist-Yosida定理密切相关。然而,内万林纳的值分布理论并不是主要的计算工具,而是利用了希弗微分方程的特殊形式和某些值的多重性以及大皮卡德定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On linear extremal problems in the class of schlicht functions
The form of the Schiffer differential equation puts severe restrictions on the class of functions that can occur as extremal functions for arbitrary coefficient-functionals of finite degree. Theorem 1 characterizes the algebraic extremal functions for coefficient-functionals of finite degree. Furthermore it is shown that the extremal function either is an algebraic function or it must possess a non-isolated singularity, or must have a transcendental branch-point. The results are closely related to the Malmquist-Yosida theorems. However Nevanlinna's Theory of Value Distribution is not the mainly used tool but the special form of the Schiffer differential equation and the multiplicity of certain values together with the Great Picard Theorem are exploited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信