未知死区约束下离散非线性系统的反演控制

V. Deolia, S. Purwar, T. Sharma
{"title":"未知死区约束下离散非线性系统的反演控制","authors":"V. Deolia, S. Purwar, T. Sharma","doi":"10.1109/CSNT.2011.78","DOIUrl":null,"url":null,"abstract":"This paper proposes the adaptive back stepping controller for a class of nonlinear discrete-time systems in strict-feedback form with unknown dead-zone using neural networks. The control design is attained by introducing the dead-zone nonlinearity and using it in the controller design with back stepping technique. A dead-zone inverse is developed to compensate the dead-zone effect in nonlinear systems. In this scheme, Chebyshev Neural Network (CNN) is used to approximate the unknown nonlinear functions and also used to compensate the dead-zone nonlinearity. New weight updates laws are derived to guarantee uniform ultimate boundedness (UUB) for all signals in closed loop system.","PeriodicalId":294850,"journal":{"name":"2011 International Conference on Communication Systems and Network Technologies","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Backstepping Control of Discrete-Time Nonlinear System Under Unknown Dead-zone Constraint\",\"authors\":\"V. Deolia, S. Purwar, T. Sharma\",\"doi\":\"10.1109/CSNT.2011.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the adaptive back stepping controller for a class of nonlinear discrete-time systems in strict-feedback form with unknown dead-zone using neural networks. The control design is attained by introducing the dead-zone nonlinearity and using it in the controller design with back stepping technique. A dead-zone inverse is developed to compensate the dead-zone effect in nonlinear systems. In this scheme, Chebyshev Neural Network (CNN) is used to approximate the unknown nonlinear functions and also used to compensate the dead-zone nonlinearity. New weight updates laws are derived to guarantee uniform ultimate boundedness (UUB) for all signals in closed loop system.\",\"PeriodicalId\":294850,\"journal\":{\"name\":\"2011 International Conference on Communication Systems and Network Technologies\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communication Systems and Network Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNT.2011.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communication Systems and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT.2011.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

针对一类具有未知死区的严格反馈非线性离散系统,提出了一种基于神经网络的自适应反步控制器。将死区非线性引入到控制器设计中,采用反推法进行控制设计。为了补偿非线性系统中的死区效应,提出了一种死区逆。在该方案中,切比雪夫神经网络(CNN)用于逼近未知非线性函数,并用于补偿死区非线性。为了保证闭环系统中所有信号的一致最终有界性,导出了新的权值更新规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backstepping Control of Discrete-Time Nonlinear System Under Unknown Dead-zone Constraint
This paper proposes the adaptive back stepping controller for a class of nonlinear discrete-time systems in strict-feedback form with unknown dead-zone using neural networks. The control design is attained by introducing the dead-zone nonlinearity and using it in the controller design with back stepping technique. A dead-zone inverse is developed to compensate the dead-zone effect in nonlinear systems. In this scheme, Chebyshev Neural Network (CNN) is used to approximate the unknown nonlinear functions and also used to compensate the dead-zone nonlinearity. New weight updates laws are derived to guarantee uniform ultimate boundedness (UUB) for all signals in closed loop system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信