利用遗传算法增强集中爬行

Milad Shokouhi, P. Chubak, Zaynab Raeesy
{"title":"利用遗传算法增强集中爬行","authors":"Milad Shokouhi, P. Chubak, Zaynab Raeesy","doi":"10.1109/ITCC.2005.145","DOIUrl":null,"url":null,"abstract":"Web crawlers are one of the most crucial components in search engines and their optimization would have a great effect on improving the searching efficiency. In this paper, we introduce an intelligent crawler called Gcrawler that uses a genetic algorithm for improving its crawling performance. Gcrawler estimates the best path for crawling on one hand and expands its initial keywords by using a genetic algorithm during the crawling on the other hand. This is the first crawler that acts intelligently without any relevance feedback or training. All the processes are online and there is no need for direct interaction with the users.","PeriodicalId":326887,"journal":{"name":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Enhancing focused crawling with genetic algorithms\",\"authors\":\"Milad Shokouhi, P. Chubak, Zaynab Raeesy\",\"doi\":\"10.1109/ITCC.2005.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web crawlers are one of the most crucial components in search engines and their optimization would have a great effect on improving the searching efficiency. In this paper, we introduce an intelligent crawler called Gcrawler that uses a genetic algorithm for improving its crawling performance. Gcrawler estimates the best path for crawling on one hand and expands its initial keywords by using a genetic algorithm during the crawling on the other hand. This is the first crawler that acts intelligently without any relevance feedback or training. All the processes are online and there is no need for direct interaction with the users.\",\"PeriodicalId\":326887,\"journal\":{\"name\":\"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITCC.2005.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2005.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

网络爬虫是搜索引擎中最重要的组成部分之一,对其进行优化对提高搜索效率有很大的影响。在本文中,我们介绍了一种名为Gcrawler的智能爬虫,它使用遗传算法来提高其爬行性能。Gcrawler一方面估计爬行的最佳路径,另一方面在爬行过程中使用遗传算法扩展初始关键字。这是第一个在没有任何相关反馈或训练的情况下智能行动的爬虫。所有的流程都是在线的,不需要与用户直接交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing focused crawling with genetic algorithms
Web crawlers are one of the most crucial components in search engines and their optimization would have a great effect on improving the searching efficiency. In this paper, we introduce an intelligent crawler called Gcrawler that uses a genetic algorithm for improving its crawling performance. Gcrawler estimates the best path for crawling on one hand and expands its initial keywords by using a genetic algorithm during the crawling on the other hand. This is the first crawler that acts intelligently without any relevance feedback or training. All the processes are online and there is no need for direct interaction with the users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信