基于交叉遗传粒子群的改进LSSVM故障诊断分类方法

Xu Zhang, Darong Huang, Ling Zhao, Bo Mi, Yang Liu
{"title":"基于交叉遗传粒子群的改进LSSVM故障诊断分类方法","authors":"Xu Zhang, Darong Huang, Ling Zhao, Bo Mi, Yang Liu","doi":"10.1109/SAFEPROCESS45799.2019.9213315","DOIUrl":null,"url":null,"abstract":"It is difficult to select the parameters of least squares support vector machine (LSSVM) when studying the classification algorithm, A particle swarm optimization algorithm based on crisscross inheritance method is proposed to find the optimal parameters of LSSVM. Further, the wavelet packet is adopted to process the bearing signal and extract time-frequency domain features, which are used as the input of the LSSVM. The classification model is established and applied to identify the fault of bearing. Classification result shows the classification accuracy is improved, and the LSSVM is optimized.","PeriodicalId":178752,"journal":{"name":"CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved LSSVM Fault Diagnosis Classification Method Based on Cross Genetic Particle Swarm\",\"authors\":\"Xu Zhang, Darong Huang, Ling Zhao, Bo Mi, Yang Liu\",\"doi\":\"10.1109/SAFEPROCESS45799.2019.9213315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is difficult to select the parameters of least squares support vector machine (LSSVM) when studying the classification algorithm, A particle swarm optimization algorithm based on crisscross inheritance method is proposed to find the optimal parameters of LSSVM. Further, the wavelet packet is adopted to process the bearing signal and extract time-frequency domain features, which are used as the input of the LSSVM. The classification model is established and applied to identify the fault of bearing. Classification result shows the classification accuracy is improved, and the LSSVM is optimized.\",\"PeriodicalId\":178752,\"journal\":{\"name\":\"CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved LSSVM Fault Diagnosis Classification Method Based on Cross Genetic Particle Swarm
It is difficult to select the parameters of least squares support vector machine (LSSVM) when studying the classification algorithm, A particle swarm optimization algorithm based on crisscross inheritance method is proposed to find the optimal parameters of LSSVM. Further, the wavelet packet is adopted to process the bearing signal and extract time-frequency domain features, which are used as the input of the LSSVM. The classification model is established and applied to identify the fault of bearing. Classification result shows the classification accuracy is improved, and the LSSVM is optimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信