基于生日问题的多方计算

P. Hudoba, P. Burcsi
{"title":"基于生日问题的多方计算","authors":"P. Hudoba, P. Burcsi","doi":"10.14232/ACTACYB.24.1.2019.4","DOIUrl":null,"url":null,"abstract":"Suppose there are n people in a classroom and we want to decide if there are two of them who were born on the same day of the year. The well-known birthday paradox is concerned with the probability of this event and is discussed in many textbooks on probability. In this paper we focus on cryptographic aspects of the problem: how can we decide if there is a collision of birthdays without the participants disclosing their respective date of birth. We propose several procedures for solving this in a privacy-preserving way and compare them according to their computational and communication complexity.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi Party Computation Motivated by the Birthday Problem\",\"authors\":\"P. Hudoba, P. Burcsi\",\"doi\":\"10.14232/ACTACYB.24.1.2019.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose there are n people in a classroom and we want to decide if there are two of them who were born on the same day of the year. The well-known birthday paradox is concerned with the probability of this event and is discussed in many textbooks on probability. In this paper we focus on cryptographic aspects of the problem: how can we decide if there is a collision of birthdays without the participants disclosing their respective date of birth. We propose several procedures for solving this in a privacy-preserving way and compare them according to their computational and communication complexity.\",\"PeriodicalId\":187125,\"journal\":{\"name\":\"Acta Cybern.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/ACTACYB.24.1.2019.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/ACTACYB.24.1.2019.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设教室里有n个人,我们想确定其中是否有两个人是同年同一天出生的。众所周知的生日悖论与这一事件的概率有关,在许多概率论教科书中都有讨论。在本文中,我们关注这个问题的密码学方面:我们如何确定是否存在生日冲突,而不需要参与者披露他们各自的出生日期。我们提出了几种以隐私保护的方式解决这一问题的方法,并根据它们的计算和通信复杂性对它们进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi Party Computation Motivated by the Birthday Problem
Suppose there are n people in a classroom and we want to decide if there are two of them who were born on the same day of the year. The well-known birthday paradox is concerned with the probability of this event and is discussed in many textbooks on probability. In this paper we focus on cryptographic aspects of the problem: how can we decide if there is a collision of birthdays without the participants disclosing their respective date of birth. We propose several procedures for solving this in a privacy-preserving way and compare them according to their computational and communication complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信