{"title":"基于生日问题的多方计算","authors":"P. Hudoba, P. Burcsi","doi":"10.14232/ACTACYB.24.1.2019.4","DOIUrl":null,"url":null,"abstract":"Suppose there are n people in a classroom and we want to decide if there are two of them who were born on the same day of the year. The well-known birthday paradox is concerned with the probability of this event and is discussed in many textbooks on probability. In this paper we focus on cryptographic aspects of the problem: how can we decide if there is a collision of birthdays without the participants disclosing their respective date of birth. We propose several procedures for solving this in a privacy-preserving way and compare them according to their computational and communication complexity.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi Party Computation Motivated by the Birthday Problem\",\"authors\":\"P. Hudoba, P. Burcsi\",\"doi\":\"10.14232/ACTACYB.24.1.2019.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose there are n people in a classroom and we want to decide if there are two of them who were born on the same day of the year. The well-known birthday paradox is concerned with the probability of this event and is discussed in many textbooks on probability. In this paper we focus on cryptographic aspects of the problem: how can we decide if there is a collision of birthdays without the participants disclosing their respective date of birth. We propose several procedures for solving this in a privacy-preserving way and compare them according to their computational and communication complexity.\",\"PeriodicalId\":187125,\"journal\":{\"name\":\"Acta Cybern.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/ACTACYB.24.1.2019.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/ACTACYB.24.1.2019.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi Party Computation Motivated by the Birthday Problem
Suppose there are n people in a classroom and we want to decide if there are two of them who were born on the same day of the year. The well-known birthday paradox is concerned with the probability of this event and is discussed in many textbooks on probability. In this paper we focus on cryptographic aspects of the problem: how can we decide if there is a collision of birthdays without the participants disclosing their respective date of birth. We propose several procedures for solving this in a privacy-preserving way and compare them according to their computational and communication complexity.