流形学习排序技术在人脸识别中的应用研究

A. Zagouras, G. Economou, Andrew Macedonas, S. Fotopoulos
{"title":"流形学习排序技术在人脸识别中的应用研究","authors":"A. Zagouras, G. Economou, Andrew Macedonas, S. Fotopoulos","doi":"10.1109/MMSP.2007.4412912","DOIUrl":null,"url":null,"abstract":"Locally linear embedding (LLE), isometric mapping (Isomap) are two relatively new nonlinear dimensionality reduction algorithms also used in face recognition applications. Their main aim is to create a low-dimensional embeddings of the original high-dimensional data, laying the face data points on a 'face manifold'. In this work in order to test their performance we applied LLE and Isomap in two face databases together with principal component analysis (PCA), their linear counterpart, varying as parameters the (i) number embedding dimensions and (ii) the number of neighbours. Furthermore, at the final stage we used a data ranking algorithm, which ranks the data with respect to the intrinsic manifold structure and its geometric properties. Experimental results indicate the superiority of the data ranking algorithm on face manifolds against the classical Euclidean distance measure.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An application study of manifold learning-ranking techniques in face recognition\",\"authors\":\"A. Zagouras, G. Economou, Andrew Macedonas, S. Fotopoulos\",\"doi\":\"10.1109/MMSP.2007.4412912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locally linear embedding (LLE), isometric mapping (Isomap) are two relatively new nonlinear dimensionality reduction algorithms also used in face recognition applications. Their main aim is to create a low-dimensional embeddings of the original high-dimensional data, laying the face data points on a 'face manifold'. In this work in order to test their performance we applied LLE and Isomap in two face databases together with principal component analysis (PCA), their linear counterpart, varying as parameters the (i) number embedding dimensions and (ii) the number of neighbours. Furthermore, at the final stage we used a data ranking algorithm, which ranks the data with respect to the intrinsic manifold structure and its geometric properties. Experimental results indicate the superiority of the data ranking algorithm on face manifolds against the classical Euclidean distance measure.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

局部线性嵌入(LLE)和等距映射(Isomap)是两种相对较新的非线性降维算法,也应用于人脸识别。他们的主要目的是创建原始高维数据的低维嵌入,将人脸数据点放置在“人脸流形”上。在这项工作中,为了测试它们的性能,我们在两个人脸数据库中应用了LLE和Isomap,以及它们的线性对应的主成分分析(PCA),随着参数的变化(i)嵌入维数和(ii)邻居数量。此外,在最后阶段,我们使用了数据排序算法,该算法根据数据的内在流形结构及其几何性质对数据进行排序。实验结果表明,该算法在人脸流形上的数据排序优于经典的欧几里得距离度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An application study of manifold learning-ranking techniques in face recognition
Locally linear embedding (LLE), isometric mapping (Isomap) are two relatively new nonlinear dimensionality reduction algorithms also used in face recognition applications. Their main aim is to create a low-dimensional embeddings of the original high-dimensional data, laying the face data points on a 'face manifold'. In this work in order to test their performance we applied LLE and Isomap in two face databases together with principal component analysis (PCA), their linear counterpart, varying as parameters the (i) number embedding dimensions and (ii) the number of neighbours. Furthermore, at the final stage we used a data ranking algorithm, which ranks the data with respect to the intrinsic manifold structure and its geometric properties. Experimental results indicate the superiority of the data ranking algorithm on face manifolds against the classical Euclidean distance measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信