含有圆弧的多边形的密封试验

M. Gombosi
{"title":"含有圆弧的多边形的密封试验","authors":"M. Gombosi","doi":"10.1109/EGUK.2002.1011280","DOIUrl":null,"url":null,"abstract":"The paper describes an extended algorithm for solving the point-in-polygon problem. The polygon in this case consists of straight edges and also from circular arcs. The algorithm uses the classical ray intersection method. The difference is that we now have two types of geometric objects to test for intersections. Processing is done with simple and efficient tests, which quickly answer our question. By the use of appropriate data structure, this task can be done safely and easily. Despite the extension of the classical ray intersection method, the algorithm still runs in linear time complexity.","PeriodicalId":226195,"journal":{"name":"Proceedings 20th Eurographics UK Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Containment test for polygons containing circular arcs\",\"authors\":\"M. Gombosi\",\"doi\":\"10.1109/EGUK.2002.1011280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes an extended algorithm for solving the point-in-polygon problem. The polygon in this case consists of straight edges and also from circular arcs. The algorithm uses the classical ray intersection method. The difference is that we now have two types of geometric objects to test for intersections. Processing is done with simple and efficient tests, which quickly answer our question. By the use of appropriate data structure, this task can be done safely and easily. Despite the extension of the classical ray intersection method, the algorithm still runs in linear time complexity.\",\"PeriodicalId\":226195,\"journal\":{\"name\":\"Proceedings 20th Eurographics UK Conference\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 20th Eurographics UK Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EGUK.2002.1011280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 20th Eurographics UK Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EGUK.2002.1011280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了一种求解多边形中点问题的扩展算法。在这种情况下,多边形由直边和圆弧组成。该算法采用经典的射线相交法。不同之处在于,我们现在有两种类型的几何对象来测试交集。处理是通过简单而有效的测试完成的,它很快回答了我们的问题。通过使用适当的数据结构,可以安全方便地完成此任务。尽管对经典的射线相交法进行了扩展,但该算法仍然在线性时间复杂度下运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Containment test for polygons containing circular arcs
The paper describes an extended algorithm for solving the point-in-polygon problem. The polygon in this case consists of straight edges and also from circular arcs. The algorithm uses the classical ray intersection method. The difference is that we now have two types of geometric objects to test for intersections. Processing is done with simple and efficient tests, which quickly answer our question. By the use of appropriate data structure, this task can be done safely and easily. Despite the extension of the classical ray intersection method, the algorithm still runs in linear time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信