一些普遍的矩阵方法

Anneli Nappus, Tamara Sörmus, Tallinna Pedagoogikaülikooli, Fachbereich Mathematik, Zu diesen Sitzen
{"title":"一些普遍的矩阵方法","authors":"Anneli Nappus, Tamara Sörmus, Tallinna Pedagoogikaülikooli, Fachbereich Mathematik, Zu diesen Sitzen","doi":"10.3176/phys.math.1996.2/3.10","DOIUrl":null,"url":null,"abstract":"the summability of sequences in abstract spaces X by the summability methods defined by matrices of bounded linear operators are used. The operator-form generalizations of classical Euler—Knopp and Riesz summability methods are introduced. The conditions under which these methods will be of @& — (-type (where a and B are any of the sequence spaces myx, cx or [x) are also given.","PeriodicalId":308961,"journal":{"name":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EINIGE VERALLGEMEINERTE MATRIXVERFAHREN\",\"authors\":\"Anneli Nappus, Tamara Sörmus, Tallinna Pedagoogikaülikooli, Fachbereich Mathematik, Zu diesen Sitzen\",\"doi\":\"10.3176/phys.math.1996.2/3.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the summability of sequences in abstract spaces X by the summability methods defined by matrices of bounded linear operators are used. The operator-form generalizations of classical Euler—Knopp and Riesz summability methods are introduced. The conditions under which these methods will be of @& — (-type (where a and B are any of the sequence spaces myx, cx or [x) are also given.\",\"PeriodicalId\":308961,\"journal\":{\"name\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3176/phys.math.1996.2/3.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3176/phys.math.1996.2/3.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用有界线性算子矩阵定义的可和性方法,研究了抽象空间X中序列的可和性。介绍了经典Euler-Knopp和Riesz可和性方法的算子形式推广。还给出了这些方法为@& -type(其中a和B是序列空间myx, cx或[x]中的任何一个)的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EINIGE VERALLGEMEINERTE MATRIXVERFAHREN
the summability of sequences in abstract spaces X by the summability methods defined by matrices of bounded linear operators are used. The operator-form generalizations of classical Euler—Knopp and Riesz summability methods are introduced. The conditions under which these methods will be of @& — (-type (where a and B are any of the sequence spaces myx, cx or [x) are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信