Anneli Nappus, Tamara Sörmus, Tallinna Pedagoogikaülikooli, Fachbereich Mathematik, Zu diesen Sitzen
{"title":"一些普遍的矩阵方法","authors":"Anneli Nappus, Tamara Sörmus, Tallinna Pedagoogikaülikooli, Fachbereich Mathematik, Zu diesen Sitzen","doi":"10.3176/phys.math.1996.2/3.10","DOIUrl":null,"url":null,"abstract":"the summability of sequences in abstract spaces X by the summability methods defined by matrices of bounded linear operators are used. The operator-form generalizations of classical Euler—Knopp and Riesz summability methods are introduced. The conditions under which these methods will be of @& — (-type (where a and B are any of the sequence spaces myx, cx or [x) are also given.","PeriodicalId":308961,"journal":{"name":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EINIGE VERALLGEMEINERTE MATRIXVERFAHREN\",\"authors\":\"Anneli Nappus, Tamara Sörmus, Tallinna Pedagoogikaülikooli, Fachbereich Mathematik, Zu diesen Sitzen\",\"doi\":\"10.3176/phys.math.1996.2/3.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the summability of sequences in abstract spaces X by the summability methods defined by matrices of bounded linear operators are used. The operator-form generalizations of classical Euler—Knopp and Riesz summability methods are introduced. The conditions under which these methods will be of @& — (-type (where a and B are any of the sequence spaces myx, cx or [x) are also given.\",\"PeriodicalId\":308961,\"journal\":{\"name\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3176/phys.math.1996.2/3.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3176/phys.math.1996.2/3.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
the summability of sequences in abstract spaces X by the summability methods defined by matrices of bounded linear operators are used. The operator-form generalizations of classical Euler—Knopp and Riesz summability methods are introduced. The conditions under which these methods will be of @& — (-type (where a and B are any of the sequence spaces myx, cx or [x) are also given.