Hsin-Jung Yang, Kermin Fleming, Michael Adler, J. Emer
{"title":"LEAP共享存储器:FPGA相干存储器的自动化构建","authors":"Hsin-Jung Yang, Kermin Fleming, Michael Adler, J. Emer","doi":"10.1109/FCCM.2014.43","DOIUrl":null,"url":null,"abstract":"Parallel programming has been widely used in many scientific and technical areas to solve large problems. While general-purpose processors have rich infrastructure to support parallel programming on shared memory, such as coherent caches and synchronization libraries, parallel programming infrastructure for FPGAs is limited. Thus, development of FPGA-based parallel algorithms remains difficult. In this work, we seek to simplify parallel programming on FPGAs. We provide a set of easy-to-use declarative primitives to maintain coherency and consistency of accesses to shared memory resources. We propose a shared-memory service that automatically manages coherent caches on multiple FPGAs. Experimental results of a 2-dimensional heat transfer equation show that the shared memory service with our distributed coherent caches outperforms a centralized cache by 2.6x. To handle synchronization, we provide new lock and barrier primitives that leverage native FPGA communication capabilities and outperform traditional through-memory primitives by 1.8x.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"LEAP Shared Memories: Automating the Construction of FPGA Coherent Memories\",\"authors\":\"Hsin-Jung Yang, Kermin Fleming, Michael Adler, J. Emer\",\"doi\":\"10.1109/FCCM.2014.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel programming has been widely used in many scientific and technical areas to solve large problems. While general-purpose processors have rich infrastructure to support parallel programming on shared memory, such as coherent caches and synchronization libraries, parallel programming infrastructure for FPGAs is limited. Thus, development of FPGA-based parallel algorithms remains difficult. In this work, we seek to simplify parallel programming on FPGAs. We provide a set of easy-to-use declarative primitives to maintain coherency and consistency of accesses to shared memory resources. We propose a shared-memory service that automatically manages coherent caches on multiple FPGAs. Experimental results of a 2-dimensional heat transfer equation show that the shared memory service with our distributed coherent caches outperforms a centralized cache by 2.6x. To handle synchronization, we provide new lock and barrier primitives that leverage native FPGA communication capabilities and outperform traditional through-memory primitives by 1.8x.\",\"PeriodicalId\":246162,\"journal\":{\"name\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2014.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LEAP Shared Memories: Automating the Construction of FPGA Coherent Memories
Parallel programming has been widely used in many scientific and technical areas to solve large problems. While general-purpose processors have rich infrastructure to support parallel programming on shared memory, such as coherent caches and synchronization libraries, parallel programming infrastructure for FPGAs is limited. Thus, development of FPGA-based parallel algorithms remains difficult. In this work, we seek to simplify parallel programming on FPGAs. We provide a set of easy-to-use declarative primitives to maintain coherency and consistency of accesses to shared memory resources. We propose a shared-memory service that automatically manages coherent caches on multiple FPGAs. Experimental results of a 2-dimensional heat transfer equation show that the shared memory service with our distributed coherent caches outperforms a centralized cache by 2.6x. To handle synchronization, we provide new lock and barrier primitives that leverage native FPGA communication capabilities and outperform traditional through-memory primitives by 1.8x.