基于增益比的不完整数据选择分类器

Jingnian Chen, Shujun Fu, Taorong Qiu
{"title":"基于增益比的不完整数据选择分类器","authors":"Jingnian Chen, Shujun Fu, Taorong Qiu","doi":"10.1109/GRC.2009.5255162","DOIUrl":null,"url":null,"abstract":"By deleting irrelevant or redundant attributes of a data set, selective classifiers can effectively improve the accuracy and efficiency of classification. Though many selective classifiers have been proposed, most of them deal with complete data. Yet actual data sets are often incomplete and have many redundant or irrelevant attributes. So constructing selective classifiers for incomplete data is important. With former work and Information gain ratio, a hybrid selective classifier for incomplete data, denoted as GBSD, is presented. Experiment results on twelve benchmark incomplete data sets show that GBSD can effectively improve the accuracy and efficiency of classification while enormously reducing the number of attributes.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gain-ratio-Based Selective classifiers for incomplete data\",\"authors\":\"Jingnian Chen, Shujun Fu, Taorong Qiu\",\"doi\":\"10.1109/GRC.2009.5255162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By deleting irrelevant or redundant attributes of a data set, selective classifiers can effectively improve the accuracy and efficiency of classification. Though many selective classifiers have been proposed, most of them deal with complete data. Yet actual data sets are often incomplete and have many redundant or irrelevant attributes. So constructing selective classifiers for incomplete data is important. With former work and Information gain ratio, a hybrid selective classifier for incomplete data, denoted as GBSD, is presented. Experiment results on twelve benchmark incomplete data sets show that GBSD can effectively improve the accuracy and efficiency of classification while enormously reducing the number of attributes.\",\"PeriodicalId\":388774,\"journal\":{\"name\":\"2009 IEEE International Conference on Granular Computing\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2009.5255162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

选择性分类器通过删除数据集中不相关或冗余的属性,可以有效地提高分类的准确性和效率。虽然已经提出了许多选择性分类器,但大多数都是处理完整数据的。然而,实际的数据集往往是不完整的,并且有许多冗余或不相关的属性。因此,为不完整数据构建选择性分类器是非常重要的。在原有工作和信息增益比的基础上,提出了一种不完全数据的混合选择分类器GBSD。在12个基准不完全数据集上的实验结果表明,GBSD在极大地减少属性数量的同时,能有效地提高分类的准确率和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gain-ratio-Based Selective classifiers for incomplete data
By deleting irrelevant or redundant attributes of a data set, selective classifiers can effectively improve the accuracy and efficiency of classification. Though many selective classifiers have been proposed, most of them deal with complete data. Yet actual data sets are often incomplete and have many redundant or irrelevant attributes. So constructing selective classifiers for incomplete data is important. With former work and Information gain ratio, a hybrid selective classifier for incomplete data, denoted as GBSD, is presented. Experiment results on twelve benchmark incomplete data sets show that GBSD can effectively improve the accuracy and efficiency of classification while enormously reducing the number of attributes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信