L. Alberti, Omar Bottesi, S. Calligaro, Piyush Kumar, R. Petrella
{"title":"基于自适应高频注入的IPMSM和SynRM无传感器控制","authors":"L. Alberti, Omar Bottesi, S. Calligaro, Piyush Kumar, R. Petrella","doi":"10.1109/SLED.2017.8078437","DOIUrl":null,"url":null,"abstract":"An auto-tuning and self-adaptation procedure for high-frequency injection (HFI) based position and speed estimation algorithms in IPMSM and SynRM drives is proposed in this paper. Analytical developments show that the dynamics of the high-frequency tracking loop varies with differential inductances, which in turn depend on the machine operating point due to saturation. On-line estimation and adaptation of the small-signal gain of the loop is proposed here, allowing accurate auto-tuning of the sensorless control scheme, even without any a priori knowledge of the machine parameters. Interesting byproducts of this proposal are the possibility for on-line adaptation of the current controllers and of the injected voltage magnitude, leading to important advantages from the performance, loss and acoustic point-of-view. The theoretical basis of the method will be first introduced and the main concept demonstrated by means of simulations. Implementation has been carried out using the hardware of a standard industrial drive and two 2.2 kW prototype IPMSMs. Experimental test results demonstrate the feasibility and effectiveness of the proposal.","PeriodicalId":386486,"journal":{"name":"2017 IEEE International Symposium on Sensorless Control for Electrical Drives (SLED)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Self-adaptive high-frequency injection based sensorless control for IPMSM and SynRM\",\"authors\":\"L. Alberti, Omar Bottesi, S. Calligaro, Piyush Kumar, R. Petrella\",\"doi\":\"10.1109/SLED.2017.8078437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An auto-tuning and self-adaptation procedure for high-frequency injection (HFI) based position and speed estimation algorithms in IPMSM and SynRM drives is proposed in this paper. Analytical developments show that the dynamics of the high-frequency tracking loop varies with differential inductances, which in turn depend on the machine operating point due to saturation. On-line estimation and adaptation of the small-signal gain of the loop is proposed here, allowing accurate auto-tuning of the sensorless control scheme, even without any a priori knowledge of the machine parameters. Interesting byproducts of this proposal are the possibility for on-line adaptation of the current controllers and of the injected voltage magnitude, leading to important advantages from the performance, loss and acoustic point-of-view. The theoretical basis of the method will be first introduced and the main concept demonstrated by means of simulations. Implementation has been carried out using the hardware of a standard industrial drive and two 2.2 kW prototype IPMSMs. Experimental test results demonstrate the feasibility and effectiveness of the proposal.\",\"PeriodicalId\":386486,\"journal\":{\"name\":\"2017 IEEE International Symposium on Sensorless Control for Electrical Drives (SLED)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Sensorless Control for Electrical Drives (SLED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLED.2017.8078437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Sensorless Control for Electrical Drives (SLED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLED.2017.8078437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-adaptive high-frequency injection based sensorless control for IPMSM and SynRM
An auto-tuning and self-adaptation procedure for high-frequency injection (HFI) based position and speed estimation algorithms in IPMSM and SynRM drives is proposed in this paper. Analytical developments show that the dynamics of the high-frequency tracking loop varies with differential inductances, which in turn depend on the machine operating point due to saturation. On-line estimation and adaptation of the small-signal gain of the loop is proposed here, allowing accurate auto-tuning of the sensorless control scheme, even without any a priori knowledge of the machine parameters. Interesting byproducts of this proposal are the possibility for on-line adaptation of the current controllers and of the injected voltage magnitude, leading to important advantages from the performance, loss and acoustic point-of-view. The theoretical basis of the method will be first introduced and the main concept demonstrated by means of simulations. Implementation has been carried out using the hardware of a standard industrial drive and two 2.2 kW prototype IPMSMs. Experimental test results demonstrate the feasibility and effectiveness of the proposal.