用于估算锂离子电池充电状态的机器学习技术的综合研究

C. Mehta, Paawan Sharma, A. Sant
{"title":"用于估算锂离子电池充电状态的机器学习技术的综合研究","authors":"C. Mehta, Paawan Sharma, A. Sant","doi":"10.1109/aimv53313.2021.9671010","DOIUrl":null,"url":null,"abstract":"Electric Vehicles (EVs) are making more and more financial sense as the operational cost of EVs as compared to Internal Combustion Engine Vehicles (ICEV) is becoming much lower. To further increase the confidence of users in EVs, precise State of Charge (SOC) estimation is need of the hour. The SOC of a battery depends on several factors such as current, voltage, age, temperature, etc. SOC estimation of a Lithium-ion based battery chemistry is a highly complex process. This is due to the fact that Lithium-ion batteries are highly nonlinear, time variant and complex electrochemical systems. A comprehensive study of SOC estimation techniques based on Machine Learning algorithms used in Battery Management Systems (BMS) is performed in this paper. Machine Learning algorithms are highly data driven and can give accurate estimation for nonlinear systems. A critical explanation including pros and cons of all these algorithms is presented. The paper also suggests future developments in BMS.","PeriodicalId":135318,"journal":{"name":"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comprehensive study of Machine Learning Techniques used for estimating State of Charge for Li-ion Battery\",\"authors\":\"C. Mehta, Paawan Sharma, A. Sant\",\"doi\":\"10.1109/aimv53313.2021.9671010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric Vehicles (EVs) are making more and more financial sense as the operational cost of EVs as compared to Internal Combustion Engine Vehicles (ICEV) is becoming much lower. To further increase the confidence of users in EVs, precise State of Charge (SOC) estimation is need of the hour. The SOC of a battery depends on several factors such as current, voltage, age, temperature, etc. SOC estimation of a Lithium-ion based battery chemistry is a highly complex process. This is due to the fact that Lithium-ion batteries are highly nonlinear, time variant and complex electrochemical systems. A comprehensive study of SOC estimation techniques based on Machine Learning algorithms used in Battery Management Systems (BMS) is performed in this paper. Machine Learning algorithms are highly data driven and can give accurate estimation for nonlinear systems. A critical explanation including pros and cons of all these algorithms is presented. The paper also suggests future developments in BMS.\",\"PeriodicalId\":135318,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aimv53313.2021.9671010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aimv53313.2021.9671010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与内燃机汽车相比,电动汽车的运营成本越来越低,因此电动汽车越来越具有经济意义。为了进一步提高用户对电动汽车的信心,目前需要精确的充电状态(SOC)估计。电池的SOC取决于几个因素,如电流、电压、寿命、温度等。锂离子电池的荷电状态评估是一个非常复杂的过程。这是因为锂离子电池是高度非线性、时变和复杂的电化学系统。本文对电池管理系统(BMS)中基于机器学习算法的SOC估计技术进行了全面的研究。机器学习算法是高度数据驱动的,可以对非线性系统给出准确的估计。对所有这些算法的优缺点进行了批判性的解释。本文还提出了BMS的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive study of Machine Learning Techniques used for estimating State of Charge for Li-ion Battery
Electric Vehicles (EVs) are making more and more financial sense as the operational cost of EVs as compared to Internal Combustion Engine Vehicles (ICEV) is becoming much lower. To further increase the confidence of users in EVs, precise State of Charge (SOC) estimation is need of the hour. The SOC of a battery depends on several factors such as current, voltage, age, temperature, etc. SOC estimation of a Lithium-ion based battery chemistry is a highly complex process. This is due to the fact that Lithium-ion batteries are highly nonlinear, time variant and complex electrochemical systems. A comprehensive study of SOC estimation techniques based on Machine Learning algorithms used in Battery Management Systems (BMS) is performed in this paper. Machine Learning algorithms are highly data driven and can give accurate estimation for nonlinear systems. A critical explanation including pros and cons of all these algorithms is presented. The paper also suggests future developments in BMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信