用YCgCr颜色模型分割槟榔束

R. Dhanesha, C. L. Shrinivasa Naika, Y. Kantharaj
{"title":"用YCgCr颜色模型分割槟榔束","authors":"R. Dhanesha, C. L. Shrinivasa Naika, Y. Kantharaj","doi":"10.1109/ICAIT47043.2019.8987431","DOIUrl":null,"url":null,"abstract":"Arecanut is profit-oriented crop of south India. In the market maturity level decides the price of Arecanut. To enhance the profitability identifying maturity level of Arecanut before harvesting is indispensable. Farmer need expertise to determine maturity level otherwise they get less profit for their crops. In recent times Computer Vision and Image Processing techniques are used in Precision Agriculture to identify the matured fruits and vegetables before harvesting. This paper proposes YCgCr color model to automatically segment the Arecanut bunch from a given image. Further, the segmented image could be used to determine Arecanut maturity level. Experiments were conducted to evaluate the efficacy of the segmentation method and found that the average Volumetric Overlap Error (VOE) is - 0.30 and Dice Similarity Coefficient (DSC) is 0.81.","PeriodicalId":221994,"journal":{"name":"2019 1st International Conference on Advances in Information Technology (ICAIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Segmentation of Arecanut Bunches using YCgCr Color Model\",\"authors\":\"R. Dhanesha, C. L. Shrinivasa Naika, Y. Kantharaj\",\"doi\":\"10.1109/ICAIT47043.2019.8987431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arecanut is profit-oriented crop of south India. In the market maturity level decides the price of Arecanut. To enhance the profitability identifying maturity level of Arecanut before harvesting is indispensable. Farmer need expertise to determine maturity level otherwise they get less profit for their crops. In recent times Computer Vision and Image Processing techniques are used in Precision Agriculture to identify the matured fruits and vegetables before harvesting. This paper proposes YCgCr color model to automatically segment the Arecanut bunch from a given image. Further, the segmented image could be used to determine Arecanut maturity level. Experiments were conducted to evaluate the efficacy of the segmentation method and found that the average Volumetric Overlap Error (VOE) is - 0.30 and Dice Similarity Coefficient (DSC) is 0.81.\",\"PeriodicalId\":221994,\"journal\":{\"name\":\"2019 1st International Conference on Advances in Information Technology (ICAIT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Advances in Information Technology (ICAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIT47043.2019.8987431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Advances in Information Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT47043.2019.8987431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

槟榔是印度南部以盈利为导向的作物。在市场上,成熟程度决定了槟榔的价格。为了提高盈利能力,在采收前确定槟榔的成熟度是必不可少的。农民需要专业知识来确定成熟度,否则他们的作物利润就会减少。近年来,计算机视觉和图像处理技术被应用于精准农业中,用于在收获前识别成熟的水果和蔬菜。提出了YCgCr颜色模型,对给定图像中的槟榔群进行自动分割。此外,分割后的图像可以用来确定槟榔的成熟度。实验结果表明,该分割方法的平均体积重叠误差(VOE)为- 0.30,骰子相似系数(DSC)为0.81。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of Arecanut Bunches using YCgCr Color Model
Arecanut is profit-oriented crop of south India. In the market maturity level decides the price of Arecanut. To enhance the profitability identifying maturity level of Arecanut before harvesting is indispensable. Farmer need expertise to determine maturity level otherwise they get less profit for their crops. In recent times Computer Vision and Image Processing techniques are used in Precision Agriculture to identify the matured fruits and vegetables before harvesting. This paper proposes YCgCr color model to automatically segment the Arecanut bunch from a given image. Further, the segmented image could be used to determine Arecanut maturity level. Experiments were conducted to evaluate the efficacy of the segmentation method and found that the average Volumetric Overlap Error (VOE) is - 0.30 and Dice Similarity Coefficient (DSC) is 0.81.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信