基于Boruta-GBM模型的信贷审批预测

Ze Chen, Geng-Mei Lin, Xiuling Jin
{"title":"基于Boruta-GBM模型的信贷审批预测","authors":"Ze Chen, Geng-Mei Lin, Xiuling Jin","doi":"10.1109/icsai53574.2021.9664026","DOIUrl":null,"url":null,"abstract":"In the context of bank loans' application, the choice of high-quality customers has become the banks' key emphasis in work. In this paper, we make statistical analysis on the crucial factors that influence credit approval. Firstly, the Boruta algorithm is utilized to screen the original features. For the new feature combination, Gradient Boosting Machines (GBM) model is used to decide credit approval. Finally, by comparing with other classification models, the Boruta-GBM model greatly improves the accuracy. And because of the simplicity of the Boruta-GBM model, it is convenient to intelligently select high-quality customers for bank loans.","PeriodicalId":131284,"journal":{"name":"2021 7th International Conference on Systems and Informatics (ICSAI)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Credit Approval Prediction Based on Boruta-GBM Model\",\"authors\":\"Ze Chen, Geng-Mei Lin, Xiuling Jin\",\"doi\":\"10.1109/icsai53574.2021.9664026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of bank loans' application, the choice of high-quality customers has become the banks' key emphasis in work. In this paper, we make statistical analysis on the crucial factors that influence credit approval. Firstly, the Boruta algorithm is utilized to screen the original features. For the new feature combination, Gradient Boosting Machines (GBM) model is used to decide credit approval. Finally, by comparing with other classification models, the Boruta-GBM model greatly improves the accuracy. And because of the simplicity of the Boruta-GBM model, it is convenient to intelligently select high-quality customers for bank loans.\",\"PeriodicalId\":131284,\"journal\":{\"name\":\"2021 7th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icsai53574.2021.9664026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsai53574.2021.9664026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在银行贷款申请的背景下,选择优质客户已成为银行工作的重点。本文对影响信贷审批的关键因素进行了统计分析。首先,利用Boruta算法对原始特征进行筛选。对于新的特征组合,采用梯度增强机(Gradient Boosting Machines, GBM)模型来决定信用审批。最后,与其他分类模型相比,Boruta-GBM模型大大提高了分类准确率。并且由于Boruta-GBM模型的简单性,便于智能选择优质客户进行银行贷款。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Credit Approval Prediction Based on Boruta-GBM Model
In the context of bank loans' application, the choice of high-quality customers has become the banks' key emphasis in work. In this paper, we make statistical analysis on the crucial factors that influence credit approval. Firstly, the Boruta algorithm is utilized to screen the original features. For the new feature combination, Gradient Boosting Machines (GBM) model is used to decide credit approval. Finally, by comparing with other classification models, the Boruta-GBM model greatly improves the accuracy. And because of the simplicity of the Boruta-GBM model, it is convenient to intelligently select high-quality customers for bank loans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信