管理不确定的时空数据

QUeST '11 Pub Date : 2011-11-01 DOI:10.1145/2064969.2064972
T. Bernecker, Tobias Emrich, H. Kriegel, Andreas Züfle, Lei Chen, Xiang Lian, N. Mamoulis
{"title":"管理不确定的时空数据","authors":"T. Bernecker, Tobias Emrich, H. Kriegel, Andreas Züfle, Lei Chen, Xiang Lian, N. Mamoulis","doi":"10.1145/2064969.2064972","DOIUrl":null,"url":null,"abstract":"Many spatial query problems defined on uncertain data are computationally expensive, in particular, if in addition to spatial attributes, a time component is added. Although there exists a wide range of applications dealing with uncertain spatio-temporal data, there is no solution for efficient management of such data available yet. This paper is the first work to propose general models for spatio-temporal uncertain data that have the potential to allow efficient processing on a wide range of queries. The main challenge here is to unfold this potential by developing new algorithms based on these models. In addition, we give examples of interesting spatio-temporal queries on uncertain data.","PeriodicalId":284560,"journal":{"name":"QUeST '11","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Managing uncertain spatio-temporal data\",\"authors\":\"T. Bernecker, Tobias Emrich, H. Kriegel, Andreas Züfle, Lei Chen, Xiang Lian, N. Mamoulis\",\"doi\":\"10.1145/2064969.2064972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many spatial query problems defined on uncertain data are computationally expensive, in particular, if in addition to spatial attributes, a time component is added. Although there exists a wide range of applications dealing with uncertain spatio-temporal data, there is no solution for efficient management of such data available yet. This paper is the first work to propose general models for spatio-temporal uncertain data that have the potential to allow efficient processing on a wide range of queries. The main challenge here is to unfold this potential by developing new algorithms based on these models. In addition, we give examples of interesting spatio-temporal queries on uncertain data.\",\"PeriodicalId\":284560,\"journal\":{\"name\":\"QUeST '11\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"QUeST '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2064969.2064972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"QUeST '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2064969.2064972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多在不确定数据上定义的空间查询问题的计算成本很高,特别是如果在空间属性之外添加时间分量。虽然目前存在着处理不确定时空数据的广泛应用,但目前还没有有效管理这些数据的解决方案。本文是第一个为时空不确定数据提出通用模型的工作,这些模型有可能允许对广泛的查询进行有效处理。这里的主要挑战是通过开发基于这些模型的新算法来展现这种潜力。此外,我们还给出了对不确定数据进行有趣的时空查询的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Managing uncertain spatio-temporal data
Many spatial query problems defined on uncertain data are computationally expensive, in particular, if in addition to spatial attributes, a time component is added. Although there exists a wide range of applications dealing with uncertain spatio-temporal data, there is no solution for efficient management of such data available yet. This paper is the first work to propose general models for spatio-temporal uncertain data that have the potential to allow efficient processing on a wide range of queries. The main challenge here is to unfold this potential by developing new algorithms based on these models. In addition, we give examples of interesting spatio-temporal queries on uncertain data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信