{"title":"直流分区电气系统故障隔离与重构","authors":"R. Cuzner, A. Jeutter","doi":"10.1109/ESTS.2009.4906520","DOIUrl":null,"url":null,"abstract":"Fault isolation and re-configuration on a DC bus distributed through an electrical system is studied. This paper builds upon previously proposed zonal architectures that ensure power continuity during a fault and isolation of a fault with minimal impact to un-faulted portions of the system. The approach utilizes no load switches for fault isolation aided by multiple power electronic converters feeding the DC bus. Three electromechanical no load switches in a single assembly are utilized at the interface between electrical zones. The ability of the system to segregate the fault without loss of power to unfaulted zones is very limited without network communications between the power converter and switch components. A simulation model of the DC portion of the integrated power system is developed and simulation results demonstrate the effectiveness of the model in verifying the method for locating a fault and in predicting the impact of the fault to the external medium voltage AC distribution system and inter-zonal low voltage interfaces.","PeriodicalId":446953,"journal":{"name":"2009 IEEE Electric Ship Technologies Symposium","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"DC zonal electrical system fault isolation and reconfiguration\",\"authors\":\"R. Cuzner, A. Jeutter\",\"doi\":\"10.1109/ESTS.2009.4906520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault isolation and re-configuration on a DC bus distributed through an electrical system is studied. This paper builds upon previously proposed zonal architectures that ensure power continuity during a fault and isolation of a fault with minimal impact to un-faulted portions of the system. The approach utilizes no load switches for fault isolation aided by multiple power electronic converters feeding the DC bus. Three electromechanical no load switches in a single assembly are utilized at the interface between electrical zones. The ability of the system to segregate the fault without loss of power to unfaulted zones is very limited without network communications between the power converter and switch components. A simulation model of the DC portion of the integrated power system is developed and simulation results demonstrate the effectiveness of the model in verifying the method for locating a fault and in predicting the impact of the fault to the external medium voltage AC distribution system and inter-zonal low voltage interfaces.\",\"PeriodicalId\":446953,\"journal\":{\"name\":\"2009 IEEE Electric Ship Technologies Symposium\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Electric Ship Technologies Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2009.4906520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Electric Ship Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2009.4906520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DC zonal electrical system fault isolation and reconfiguration
Fault isolation and re-configuration on a DC bus distributed through an electrical system is studied. This paper builds upon previously proposed zonal architectures that ensure power continuity during a fault and isolation of a fault with minimal impact to un-faulted portions of the system. The approach utilizes no load switches for fault isolation aided by multiple power electronic converters feeding the DC bus. Three electromechanical no load switches in a single assembly are utilized at the interface between electrical zones. The ability of the system to segregate the fault without loss of power to unfaulted zones is very limited without network communications between the power converter and switch components. A simulation model of the DC portion of the integrated power system is developed and simulation results demonstrate the effectiveness of the model in verifying the method for locating a fault and in predicting the impact of the fault to the external medium voltage AC distribution system and inter-zonal low voltage interfaces.