{"title":"数据不足情况下基于迁移学习的精确姿态估计","authors":"Wonje Choi, Honguk Woo","doi":"10.1145/3523111.3523118","DOIUrl":null,"url":null,"abstract":"With the recent advance in computer vision techniques and the growing utility of real-time human pose detection and tracking, deep learning-based pose estimation has been intensively studied in recent years. These studies rely on large-scale datasets of human pose images, for which expensive annotation jobs are required due to the complex spatial structure of pose keypoints. In this work, we present a transfer learning-based pose estimation model that leverages low-cost synthetic datasets and regressive domain adaptation, enabling the sample-efficient learning on precise human poses. In evaluation, we demonstrate that our model achieves the high accurate pose estimation on a dataset of golf swing images, which is targeted for a virtual golf coaching application.","PeriodicalId":185161,"journal":{"name":"Proceedings of the 2022 5th International Conference on Machine Vision and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning based Precise Pose Estimation with Insufficient Data\",\"authors\":\"Wonje Choi, Honguk Woo\",\"doi\":\"10.1145/3523111.3523118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the recent advance in computer vision techniques and the growing utility of real-time human pose detection and tracking, deep learning-based pose estimation has been intensively studied in recent years. These studies rely on large-scale datasets of human pose images, for which expensive annotation jobs are required due to the complex spatial structure of pose keypoints. In this work, we present a transfer learning-based pose estimation model that leverages low-cost synthetic datasets and regressive domain adaptation, enabling the sample-efficient learning on precise human poses. In evaluation, we demonstrate that our model achieves the high accurate pose estimation on a dataset of golf swing images, which is targeted for a virtual golf coaching application.\",\"PeriodicalId\":185161,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Machine Vision and Applications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Machine Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3523111.3523118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523111.3523118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transfer Learning based Precise Pose Estimation with Insufficient Data
With the recent advance in computer vision techniques and the growing utility of real-time human pose detection and tracking, deep learning-based pose estimation has been intensively studied in recent years. These studies rely on large-scale datasets of human pose images, for which expensive annotation jobs are required due to the complex spatial structure of pose keypoints. In this work, we present a transfer learning-based pose estimation model that leverages low-cost synthetic datasets and regressive domain adaptation, enabling the sample-efficient learning on precise human poses. In evaluation, we demonstrate that our model achieves the high accurate pose estimation on a dataset of golf swing images, which is targeted for a virtual golf coaching application.