将用户生成的照片元数据放在地图上

E. Spyrou, Phivos Mylonas
{"title":"将用户生成的照片元数据放在地图上","authors":"E. Spyrou, Phivos Mylonas","doi":"10.1109/SMAP.2011.16","DOIUrl":null,"url":null,"abstract":"In this paper we analyze large user photo collections from Flickr in order to select the most appropriate tags to describe a geographical area. We cluster photos based on their latitude and longitude and divide large areas into smaller clusters, which we will refer to as \"geo-clusters\". Geo-clusters have a fixed size and are able to overlap. They do not cover the entire area of interest, omitting parts where no single photo has been geo-tagged at. Within each geo-cluster we analyze all collected textual metadata i.e. the user selected tags of the photos it contains. We are then able to rank them and select the most appropriate that are able to describe landmarks and other places of interest that are contained within. Finally we place these tags on a map to help users to intuitively understand places of interest/visual content at a glance.","PeriodicalId":346975,"journal":{"name":"2011 Sixth International Workshop on Semantic Media Adaptation and Personalization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Placing User-Generated Photo Metadata on a Map\",\"authors\":\"E. Spyrou, Phivos Mylonas\",\"doi\":\"10.1109/SMAP.2011.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze large user photo collections from Flickr in order to select the most appropriate tags to describe a geographical area. We cluster photos based on their latitude and longitude and divide large areas into smaller clusters, which we will refer to as \\\"geo-clusters\\\". Geo-clusters have a fixed size and are able to overlap. They do not cover the entire area of interest, omitting parts where no single photo has been geo-tagged at. Within each geo-cluster we analyze all collected textual metadata i.e. the user selected tags of the photos it contains. We are then able to rank them and select the most appropriate that are able to describe landmarks and other places of interest that are contained within. Finally we place these tags on a map to help users to intuitively understand places of interest/visual content at a glance.\",\"PeriodicalId\":346975,\"journal\":{\"name\":\"2011 Sixth International Workshop on Semantic Media Adaptation and Personalization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Workshop on Semantic Media Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMAP.2011.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Workshop on Semantic Media Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAP.2011.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们分析了来自Flickr的大量用户照片集合,以便选择最合适的标签来描述地理区域。我们根据纬度和经度对照片进行聚类,并将大片区域划分为较小的集群,我们将其称为“地理集群”。地理集群具有固定的大小,并且能够重叠。它们没有覆盖整个感兴趣的区域,省略了没有任何一张照片被地理标记的部分。在每个地理聚类中,我们分析所有收集到的文本元数据,即用户选择的照片标签。然后,我们可以对它们进行排名,并选择最合适的,能够描述其中包含的地标和其他有趣的地方。最后,我们将这些标签放在地图上,帮助用户直观地了解感兴趣的地方/视觉内容一目了然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Placing User-Generated Photo Metadata on a Map
In this paper we analyze large user photo collections from Flickr in order to select the most appropriate tags to describe a geographical area. We cluster photos based on their latitude and longitude and divide large areas into smaller clusters, which we will refer to as "geo-clusters". Geo-clusters have a fixed size and are able to overlap. They do not cover the entire area of interest, omitting parts where no single photo has been geo-tagged at. Within each geo-cluster we analyze all collected textual metadata i.e. the user selected tags of the photos it contains. We are then able to rank them and select the most appropriate that are able to describe landmarks and other places of interest that are contained within. Finally we place these tags on a map to help users to intuitively understand places of interest/visual content at a glance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信