基于自适应神经模糊推理系统的可充电电池充电状态估计

H. M. Fekry, M. M. Moustafa Hassan, M. ABD EL- AZIZ
{"title":"基于自适应神经模糊推理系统的可充电电池充电状态估计","authors":"H. M. Fekry, M. M. Moustafa Hassan, M. ABD EL- AZIZ","doi":"10.1109/ICIES.2012.6530870","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive state of charge estimator for rechargeable batteries using the Adaptive Neuro Fuzzy Inference System (ANFIS). That technique is based on that the charging current for any battery, in un-controlled current charging circuit, changes according to the battery state of charge (SOC). This proposed estimator will use the charging current, battery voltage samples and the time of each sample, from charging start, as ANFIS inputs and SOC as the output. The proposed estimator will be applied on Nickel-Cadmium battery model to test the validity of SOC ANFIS estimator to estimate the state of charge. Also, to know how the proposed estimator will be able to adapt with a new battery behavior such as capacity loss, the estimator will be tested in the case of a loss in capacity for the same Nickel-Cadmium battery model. The paper will depend on ANFIS and simulations tools in MATLAB Program to make all required models, moreover, getting the training and testing data through a charging circuit model.","PeriodicalId":410182,"journal":{"name":"2012 First International Conference on Innovative Engineering Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The state of charge estimation for rechargeable batteries using Adaptive Neuro Fuzzy Inference System (ANFIS)\",\"authors\":\"H. M. Fekry, M. M. Moustafa Hassan, M. ABD EL- AZIZ\",\"doi\":\"10.1109/ICIES.2012.6530870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an adaptive state of charge estimator for rechargeable batteries using the Adaptive Neuro Fuzzy Inference System (ANFIS). That technique is based on that the charging current for any battery, in un-controlled current charging circuit, changes according to the battery state of charge (SOC). This proposed estimator will use the charging current, battery voltage samples and the time of each sample, from charging start, as ANFIS inputs and SOC as the output. The proposed estimator will be applied on Nickel-Cadmium battery model to test the validity of SOC ANFIS estimator to estimate the state of charge. Also, to know how the proposed estimator will be able to adapt with a new battery behavior such as capacity loss, the estimator will be tested in the case of a loss in capacity for the same Nickel-Cadmium battery model. The paper will depend on ANFIS and simulations tools in MATLAB Program to make all required models, moreover, getting the training and testing data through a charging circuit model.\",\"PeriodicalId\":410182,\"journal\":{\"name\":\"2012 First International Conference on Innovative Engineering Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 First International Conference on Innovative Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIES.2012.6530870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 First International Conference on Innovative Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIES.2012.6530870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于自适应神经模糊推理系统(ANFIS)的可充电电池自适应充电状态估计方法。该技术的基础是,在不受控制的电流充电电路中,任何电池的充电电流都会根据电池的充电状态(SOC)而变化。这个建议的估计器将使用充电电流、电池电压样本和每个样本的时间,从充电开始,作为ANFIS输入,SOC作为输出。将所提出的估计器应用于镍镉电池模型,以验证SOC ANFIS估计器估计充电状态的有效性。此外,为了了解所建议的估算器如何能够适应新的电池行为,例如容量损失,将在相同的镍镉电池模型的容量损失情况下对估算器进行测试。本文将依靠ANFIS和MATLAB程序中的仿真工具制作所需的所有模型,并通过充电电路模型获得训练和测试数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The state of charge estimation for rechargeable batteries using Adaptive Neuro Fuzzy Inference System (ANFIS)
This paper presents an adaptive state of charge estimator for rechargeable batteries using the Adaptive Neuro Fuzzy Inference System (ANFIS). That technique is based on that the charging current for any battery, in un-controlled current charging circuit, changes according to the battery state of charge (SOC). This proposed estimator will use the charging current, battery voltage samples and the time of each sample, from charging start, as ANFIS inputs and SOC as the output. The proposed estimator will be applied on Nickel-Cadmium battery model to test the validity of SOC ANFIS estimator to estimate the state of charge. Also, to know how the proposed estimator will be able to adapt with a new battery behavior such as capacity loss, the estimator will be tested in the case of a loss in capacity for the same Nickel-Cadmium battery model. The paper will depend on ANFIS and simulations tools in MATLAB Program to make all required models, moreover, getting the training and testing data through a charging circuit model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信