用于检测小波增强数字化乳房x线照片微钙化的人工神经网络

B.A. Alaylioglu, F. Aghdasi
{"title":"用于检测小波增强数字化乳房x线照片微钙化的人工神经网络","authors":"B.A. Alaylioglu, F. Aghdasi","doi":"10.1109/COMSIG.1998.736935","DOIUrl":null,"url":null,"abstract":"The presence of microcalcification clusters (MCCs) is a primary sign of breast cancer. Thus, the successful detection of microcalcifications during mammographic examination is vital for the early diagnosis of the cancer. Computer-based detection methods aim to ameliorate the diagnostic process by providing the radiologist with a second opinion. An automatic detection scheme making use of a neural network classifier, with input feature vectors containing spatial and spectral image attributes, is investigated. A wavelet-based image enhancement technique is employed to improve the detection. The detection scheme is tested and preliminary results are reported.","PeriodicalId":294473,"journal":{"name":"Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An artificial neural network for detecting microcalcifications in wavelet-enhanced digitised mammograms\",\"authors\":\"B.A. Alaylioglu, F. Aghdasi\",\"doi\":\"10.1109/COMSIG.1998.736935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of microcalcification clusters (MCCs) is a primary sign of breast cancer. Thus, the successful detection of microcalcifications during mammographic examination is vital for the early diagnosis of the cancer. Computer-based detection methods aim to ameliorate the diagnostic process by providing the radiologist with a second opinion. An automatic detection scheme making use of a neural network classifier, with input feature vectors containing spatial and spectral image attributes, is investigated. A wavelet-based image enhancement technique is employed to improve the detection. The detection scheme is tested and preliminary results are reported.\",\"PeriodicalId\":294473,\"journal\":{\"name\":\"Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSIG.1998.736935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSIG.1998.736935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

微钙化团簇(mcc)的存在是乳腺癌的主要征象。因此,在乳房x光检查中成功发现微钙化对于癌症的早期诊断至关重要。基于计算机的检测方法旨在通过为放射科医生提供第二意见来改善诊断过程。研究了一种利用神经网络分类器的自动检测方案,该方法的输入特征向量包含图像的空间和光谱属性。采用基于小波的图像增强技术提高检测效果。对该检测方案进行了测试,并报告了初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An artificial neural network for detecting microcalcifications in wavelet-enhanced digitised mammograms
The presence of microcalcification clusters (MCCs) is a primary sign of breast cancer. Thus, the successful detection of microcalcifications during mammographic examination is vital for the early diagnosis of the cancer. Computer-based detection methods aim to ameliorate the diagnostic process by providing the radiologist with a second opinion. An automatic detection scheme making use of a neural network classifier, with input feature vectors containing spatial and spectral image attributes, is investigated. A wavelet-based image enhancement technique is employed to improve the detection. The detection scheme is tested and preliminary results are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信