1.10准周期结构中的张量

T. Janssen
{"title":"1.10准周期结构中的张量","authors":"T. Janssen","doi":"10.1107/97809553602060000909","DOIUrl":null,"url":null,"abstract":"This chapter is devoted to the symmetry-related physical properties of quasiperiodic crystals. In the first part the symmetry properties are described: point groups, superspace groups and the action of symmetry groups. The second part concerns the properties of tensors in higher-dimensional spaces, with emphasis on the particular cases of the piezoelectric, elastic and electric field gradient tensors. The last section gives tables of characters of some point groups for quasicrystals and of the matrices of the corresponding irreducible representations. \n \n \nKeywords: \n \nFourier module; \ncompensating gauge transformations; \nelastic constants; \nelectric field gradient; \nicosahedral quasicrystals; \nincommensurate structures; \nirreducible representations; \nmetric tensor; \nmodulation wavevector; \noctagonal quasicrystals; \npiezoelectric tensor; \nquasicrystals; \nquasiperiodic structures; \nsuperspace; \nsuperspace groups; \ntensors","PeriodicalId":338076,"journal":{"name":"International Tables for Crystallography","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"1.10 Tensors in quasiperiodic structures\",\"authors\":\"T. Janssen\",\"doi\":\"10.1107/97809553602060000909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter is devoted to the symmetry-related physical properties of quasiperiodic crystals. In the first part the symmetry properties are described: point groups, superspace groups and the action of symmetry groups. The second part concerns the properties of tensors in higher-dimensional spaces, with emphasis on the particular cases of the piezoelectric, elastic and electric field gradient tensors. The last section gives tables of characters of some point groups for quasicrystals and of the matrices of the corresponding irreducible representations. \\n \\n \\nKeywords: \\n \\nFourier module; \\ncompensating gauge transformations; \\nelastic constants; \\nelectric field gradient; \\nicosahedral quasicrystals; \\nincommensurate structures; \\nirreducible representations; \\nmetric tensor; \\nmodulation wavevector; \\noctagonal quasicrystals; \\npiezoelectric tensor; \\nquasicrystals; \\nquasiperiodic structures; \\nsuperspace; \\nsuperspace groups; \\ntensors\",\"PeriodicalId\":338076,\"journal\":{\"name\":\"International Tables for Crystallography\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Tables for Crystallography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/97809553602060000909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Tables for Crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/97809553602060000909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本章主要讨论准周期晶体的对称性相关的物理性质。第一部分描述了对称性质:点群、超空间群和对称群的作用。第二部分讨论了高维空间中张量的性质,重点讨论了压电张量、弹性张量和电场梯度张量的特殊情况。最后一节给出了拟晶体的一些点群的特征表和相应的不可约表示矩阵的特征表。关键词:傅里叶模块;补偿量规变换;弹性常数;电场梯度;二十面体准晶体;不相称的结构;不可约表示;度规张量;调制wavevector;八角形的准晶体;压电张量;准晶体;准周期的结构;超空间;超空间组织;张量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
1.10 Tensors in quasiperiodic structures
This chapter is devoted to the symmetry-related physical properties of quasiperiodic crystals. In the first part the symmetry properties are described: point groups, superspace groups and the action of symmetry groups. The second part concerns the properties of tensors in higher-dimensional spaces, with emphasis on the particular cases of the piezoelectric, elastic and electric field gradient tensors. The last section gives tables of characters of some point groups for quasicrystals and of the matrices of the corresponding irreducible representations. Keywords: Fourier module; compensating gauge transformations; elastic constants; electric field gradient; icosahedral quasicrystals; incommensurate structures; irreducible representations; metric tensor; modulation wavevector; octagonal quasicrystals; piezoelectric tensor; quasicrystals; quasiperiodic structures; superspace; superspace groups; tensors
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信