高层次综合的设计空间探索

I. Ahmad, M. Dhodhi, F. Hielscher
{"title":"高层次综合的设计空间探索","authors":"I. Ahmad, M. Dhodhi, F. Hielscher","doi":"10.1109/PCCC.1994.504159","DOIUrl":null,"url":null,"abstract":"The design methodology presented in this paper simultaneously performs scheduling, allocation and module selection using problem-space genetic algorithm (PSGA) to optimize the three items: (1) the hardware resources (i.e., functional units, registers, and interconnection cost), (2) the number of control steps and (3) the length of the clock period. The proposed PSGA based approach uses the inherent parallelism provided by genetic algorithms and exploits the problem-specific knowledge by using a simple and fast heuristic to search a large design space effectively and efficiently. The proposed PSGA method offers several advantages such as the versatility, simplicity, objective independence and the computational advantages for problems of large size over other existing techniques. Experiments on benchmarks show very promising results.","PeriodicalId":203232,"journal":{"name":"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Design-Space Exploration for High-Level Synthesis\",\"authors\":\"I. Ahmad, M. Dhodhi, F. Hielscher\",\"doi\":\"10.1109/PCCC.1994.504159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design methodology presented in this paper simultaneously performs scheduling, allocation and module selection using problem-space genetic algorithm (PSGA) to optimize the three items: (1) the hardware resources (i.e., functional units, registers, and interconnection cost), (2) the number of control steps and (3) the length of the clock period. The proposed PSGA based approach uses the inherent parallelism provided by genetic algorithms and exploits the problem-specific knowledge by using a simple and fast heuristic to search a large design space effectively and efficiently. The proposed PSGA method offers several advantages such as the versatility, simplicity, objective independence and the computational advantages for problems of large size over other existing techniques. Experiments on benchmarks show very promising results.\",\"PeriodicalId\":203232,\"journal\":{\"name\":\"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCCC.1994.504159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of 13th IEEE Annual International Phoenix Conference on Computers and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCC.1994.504159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出的设计方法使用问题空间遗传算法(PSGA)同时进行调度、分配和模块选择,以优化三个项目:(1)硬件资源(即功能单元、寄存器和互连成本),(2)控制步骤数和(3)时钟周期长度。该方法利用遗传算法固有的并行性,通过一种简单快速的启发式方法,利用问题特定知识,有效地搜索大的设计空间。所提出的PSGA方法具有通用性强、简单易行、客观无关性强、对大尺寸问题的计算能力强等优点。在基准测试上的实验显示了非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design-Space Exploration for High-Level Synthesis
The design methodology presented in this paper simultaneously performs scheduling, allocation and module selection using problem-space genetic algorithm (PSGA) to optimize the three items: (1) the hardware resources (i.e., functional units, registers, and interconnection cost), (2) the number of control steps and (3) the length of the clock period. The proposed PSGA based approach uses the inherent parallelism provided by genetic algorithms and exploits the problem-specific knowledge by using a simple and fast heuristic to search a large design space effectively and efficiently. The proposed PSGA method offers several advantages such as the versatility, simplicity, objective independence and the computational advantages for problems of large size over other existing techniques. Experiments on benchmarks show very promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信