局部自适应纹理压缩

C. Andújar, Jonàs Martínez
{"title":"局部自适应纹理压缩","authors":"C. Andújar, Jonàs Martínez","doi":"10.2312/LocalChapterEvents/CEIG/CEIG09/105-114","DOIUrl":null,"url":null,"abstract":"Current schemes for texture compression fail to exploit spatial coherence in an adaptive manner due to the strict efficiency constraints imposed by GPU-based, fragment-level decompression. In this paper we present a texture compression framework for quasi-lossless, locally-adaptive compression of graphics data. Key elements include a Hilbert scan to maximize spatial coherence, efficient encoding of homogeneous image regions through arbitrarily-sized texel runs, a cumulative run-length encoding supporting fast random-access, and a compression algorithm suitable for fixed-rate and variable-rate encoding. Our scheme can be easily integrated into the rasterization pipeline of current programmable graphics hardware allowing real-time GPU decompression. We show that our scheme clearly outperforms competing approaches such as S3TC DXT1 on a large class of images with some degree of spatial coherence. Unlike other proprietary formats, our scheme is suitable for compression of any graphics data including color maps, shadow maps and relief maps. We have observed compression rates of up to 12:1, with minimal or no loss in visual quality and a small impact on rendering time.","PeriodicalId":385751,"journal":{"name":"Spanish Computer Graphics Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Locally-Adaptive Texture Compression\",\"authors\":\"C. Andújar, Jonàs Martínez\",\"doi\":\"10.2312/LocalChapterEvents/CEIG/CEIG09/105-114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current schemes for texture compression fail to exploit spatial coherence in an adaptive manner due to the strict efficiency constraints imposed by GPU-based, fragment-level decompression. In this paper we present a texture compression framework for quasi-lossless, locally-adaptive compression of graphics data. Key elements include a Hilbert scan to maximize spatial coherence, efficient encoding of homogeneous image regions through arbitrarily-sized texel runs, a cumulative run-length encoding supporting fast random-access, and a compression algorithm suitable for fixed-rate and variable-rate encoding. Our scheme can be easily integrated into the rasterization pipeline of current programmable graphics hardware allowing real-time GPU decompression. We show that our scheme clearly outperforms competing approaches such as S3TC DXT1 on a large class of images with some degree of spatial coherence. Unlike other proprietary formats, our scheme is suitable for compression of any graphics data including color maps, shadow maps and relief maps. We have observed compression rates of up to 12:1, with minimal or no loss in visual quality and a small impact on rendering time.\",\"PeriodicalId\":385751,\"journal\":{\"name\":\"Spanish Computer Graphics Conference\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Computer Graphics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/LocalChapterEvents/CEIG/CEIG09/105-114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Computer Graphics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/LocalChapterEvents/CEIG/CEIG09/105-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于基于gpu的碎片级解压缩对效率的严格限制,当前的纹理压缩方案无法自适应地利用空间相干性。本文提出了一种纹理压缩框架,用于图形数据的准无损、局部自适应压缩。关键要素包括希尔伯特扫描以最大化空间一致性,通过任意大小的文本运行对均匀图像区域进行有效编码,支持快速随机访问的累积运行长度编码,以及适用于固定速率和可变速率编码的压缩算法。我们的方案可以很容易地集成到当前可编程图形硬件的光栅化管道中,允许实时GPU解压缩。我们表明,我们的方案在具有一定程度空间相干性的大类图像上明显优于S3TC DXT1等竞争方法。与其他专有格式不同,我们的方案适用于压缩任何图形数据,包括彩色地图,阴影地图和浮雕地图。我们已经观察到压缩率高达12:1,视觉质量损失很小或没有损失,对渲染时间的影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally-Adaptive Texture Compression
Current schemes for texture compression fail to exploit spatial coherence in an adaptive manner due to the strict efficiency constraints imposed by GPU-based, fragment-level decompression. In this paper we present a texture compression framework for quasi-lossless, locally-adaptive compression of graphics data. Key elements include a Hilbert scan to maximize spatial coherence, efficient encoding of homogeneous image regions through arbitrarily-sized texel runs, a cumulative run-length encoding supporting fast random-access, and a compression algorithm suitable for fixed-rate and variable-rate encoding. Our scheme can be easily integrated into the rasterization pipeline of current programmable graphics hardware allowing real-time GPU decompression. We show that our scheme clearly outperforms competing approaches such as S3TC DXT1 on a large class of images with some degree of spatial coherence. Unlike other proprietary formats, our scheme is suitable for compression of any graphics data including color maps, shadow maps and relief maps. We have observed compression rates of up to 12:1, with minimal or no loss in visual quality and a small impact on rendering time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信