{"title":"从文本中自动提取因果链","authors":"Aliaksandr Huminski, Yan Bin Ng","doi":"10.32655/libres.2020.29.2.3","DOIUrl":null,"url":null,"abstract":"Background. Automatic extraction of causal chains is valuable for discovering previously unknown and hidden connections between events. However, there is only a handful of works devoted to automatic extraction of causal chains from text. Objective. To develop a method for automatic extraction of causal chains from text. Method. A new approach based on linguistic templates is suggested for causal chain extraction. It is domain-independent, not restricted to extraction from single sentences and unfolded on big data. For implementation, a sequence of four modules was deployed. These are verb restriction, part-of-speech tagging, extracting causal relations, and unification and matching events. Results. 14,821 causal chains (with length=2) have been extracted from 100,000 English Wikipedia articles. Contributions. The extracted causal chains can contribute to developing commonsense knowledge bases, reasoning resources, problem-solving, and generally in discovering previously unknown relationships between entities/events.","PeriodicalId":129706,"journal":{"name":"Library and Information Science Research E-Journal","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic extraction of causal chains from text\",\"authors\":\"Aliaksandr Huminski, Yan Bin Ng\",\"doi\":\"10.32655/libres.2020.29.2.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background. Automatic extraction of causal chains is valuable for discovering previously unknown and hidden connections between events. However, there is only a handful of works devoted to automatic extraction of causal chains from text. Objective. To develop a method for automatic extraction of causal chains from text. Method. A new approach based on linguistic templates is suggested for causal chain extraction. It is domain-independent, not restricted to extraction from single sentences and unfolded on big data. For implementation, a sequence of four modules was deployed. These are verb restriction, part-of-speech tagging, extracting causal relations, and unification and matching events. Results. 14,821 causal chains (with length=2) have been extracted from 100,000 English Wikipedia articles. Contributions. The extracted causal chains can contribute to developing commonsense knowledge bases, reasoning resources, problem-solving, and generally in discovering previously unknown relationships between entities/events.\",\"PeriodicalId\":129706,\"journal\":{\"name\":\"Library and Information Science Research E-Journal\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Library and Information Science Research E-Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32655/libres.2020.29.2.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Library and Information Science Research E-Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32655/libres.2020.29.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Background. Automatic extraction of causal chains is valuable for discovering previously unknown and hidden connections between events. However, there is only a handful of works devoted to automatic extraction of causal chains from text. Objective. To develop a method for automatic extraction of causal chains from text. Method. A new approach based on linguistic templates is suggested for causal chain extraction. It is domain-independent, not restricted to extraction from single sentences and unfolded on big data. For implementation, a sequence of four modules was deployed. These are verb restriction, part-of-speech tagging, extracting causal relations, and unification and matching events. Results. 14,821 causal chains (with length=2) have been extracted from 100,000 English Wikipedia articles. Contributions. The extracted causal chains can contribute to developing commonsense knowledge bases, reasoning resources, problem-solving, and generally in discovering previously unknown relationships between entities/events.