基于脉冲耦合神经网络的纹理图像分割

Li Yi, Tong Qinye, Fan Ying-le
{"title":"基于脉冲耦合神经网络的纹理图像分割","authors":"Li Yi, Tong Qinye, Fan Ying-le","doi":"10.1109/ICIEA.2007.4318430","DOIUrl":null,"url":null,"abstract":"Texture, a representation of the spatial relationship of gray levels in an image, is an important characteristic for the automated or semi-automated interpretation of digital images. Many previous analyses have shown how to discriminate texture images, which include gray level co-occurrence matrix (GLCM), Laws' texture energy (LAWS) and Gabor multi-channel filtering (GABOR) etc. We have devised a new method based pulse coupled neural networks (PCNN) to perform texture image segmentation. We propose a segmentation scheme, using PCNN to extract texture features of image and classified by Fuzzy c-Means algorithm (FCM). For demonstration purpose, this paper compares the discrimination ability of two texture analysis methods: pulse coupled neural networks (PCNN) and Gabor multi-channel filtering (GABOR). Experimental results indicate that our method is superior to Gabor multi-channel filtering for a wide range of texture pairs.","PeriodicalId":231682,"journal":{"name":"2007 2nd IEEE Conference on Industrial Electronics and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Texture Image Segmentation Using Pulse Coupled Neural Networks\",\"authors\":\"Li Yi, Tong Qinye, Fan Ying-le\",\"doi\":\"10.1109/ICIEA.2007.4318430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Texture, a representation of the spatial relationship of gray levels in an image, is an important characteristic for the automated or semi-automated interpretation of digital images. Many previous analyses have shown how to discriminate texture images, which include gray level co-occurrence matrix (GLCM), Laws' texture energy (LAWS) and Gabor multi-channel filtering (GABOR) etc. We have devised a new method based pulse coupled neural networks (PCNN) to perform texture image segmentation. We propose a segmentation scheme, using PCNN to extract texture features of image and classified by Fuzzy c-Means algorithm (FCM). For demonstration purpose, this paper compares the discrimination ability of two texture analysis methods: pulse coupled neural networks (PCNN) and Gabor multi-channel filtering (GABOR). Experimental results indicate that our method is superior to Gabor multi-channel filtering for a wide range of texture pairs.\",\"PeriodicalId\":231682,\"journal\":{\"name\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2007.4318430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2007.4318430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

纹理是图像中灰度级空间关系的表示,是数字图像自动或半自动解释的重要特征。在以往的许多分析中,已经介绍了如何识别纹理图像,包括灰度共生矩阵(GLCM)、Laws纹理能(Laws)和Gabor多通道滤波(Gabor)等。提出了一种基于脉冲耦合神经网络(PCNN)的纹理图像分割方法。提出了一种分割方案,利用PCNN提取图像的纹理特征,并用模糊c均值算法(FCM)进行分类。为了演示,本文比较了脉冲耦合神经网络(PCNN)和Gabor多通道滤波(Gabor)两种纹理分析方法的识别能力。实验结果表明,对于大范围的纹理对,该方法优于Gabor多通道滤波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Texture Image Segmentation Using Pulse Coupled Neural Networks
Texture, a representation of the spatial relationship of gray levels in an image, is an important characteristic for the automated or semi-automated interpretation of digital images. Many previous analyses have shown how to discriminate texture images, which include gray level co-occurrence matrix (GLCM), Laws' texture energy (LAWS) and Gabor multi-channel filtering (GABOR) etc. We have devised a new method based pulse coupled neural networks (PCNN) to perform texture image segmentation. We propose a segmentation scheme, using PCNN to extract texture features of image and classified by Fuzzy c-Means algorithm (FCM). For demonstration purpose, this paper compares the discrimination ability of two texture analysis methods: pulse coupled neural networks (PCNN) and Gabor multi-channel filtering (GABOR). Experimental results indicate that our method is superior to Gabor multi-channel filtering for a wide range of texture pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信