欧几里得最小生成树与分层空间聚类的快速并行算法(摘要)

Yiqiu Wang, Shangdi Yu, Yan Gu, Julian Shun
{"title":"欧几里得最小生成树与分层空间聚类的快速并行算法(摘要)","authors":"Yiqiu Wang, Shangdi Yu, Yan Gu, Julian Shun","doi":"10.1145/3597635.3598025","DOIUrl":null,"url":null,"abstract":"This paper presents new parallel algorithms for generating Euclidean minimum spanning trees and spatial clustering hierarchies (known as HDBSCAN^*). Our approach is based on generating a well-separated pair decomposition followed by using Kruskal's minimum spanning tree algorithm and bichromatic closest pair computations. We introduce a new notion of well-separation to reduce the work and space of our algorithm for HDBSCAN^*. We also give a new parallel divide-and-conquer algorithm for computing the dendrogram and reachability plots, which are used in visualizing clusters of different scale that arise for both EMST and HDBSCAN^*. We show that our algorithms are theoretically efficient: they have work (number of operations) matching their sequential counterparts, and polylogarithmic depth (parallel time). We implement our algorithms and propose a memory optimization that requires only a subset of well-separated pairs to be computed and materialized, leading to savings in both space (up to 10x) and time (up to 8x). Our experiments on large real-world and synthetic data sets using a 48-core machine show that our fastest algorithms outperform the best serial algorithms for the problems by 11.13--55.89x, and existing parallel algorithms by at least an order of magnitude.","PeriodicalId":185981,"journal":{"name":"Proceedings of the 2023 ACM Workshop on Highlights of Parallel Computing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and Hierarchical Spatial Clustering (Abstract)\",\"authors\":\"Yiqiu Wang, Shangdi Yu, Yan Gu, Julian Shun\",\"doi\":\"10.1145/3597635.3598025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents new parallel algorithms for generating Euclidean minimum spanning trees and spatial clustering hierarchies (known as HDBSCAN^*). Our approach is based on generating a well-separated pair decomposition followed by using Kruskal's minimum spanning tree algorithm and bichromatic closest pair computations. We introduce a new notion of well-separation to reduce the work and space of our algorithm for HDBSCAN^*. We also give a new parallel divide-and-conquer algorithm for computing the dendrogram and reachability plots, which are used in visualizing clusters of different scale that arise for both EMST and HDBSCAN^*. We show that our algorithms are theoretically efficient: they have work (number of operations) matching their sequential counterparts, and polylogarithmic depth (parallel time). We implement our algorithms and propose a memory optimization that requires only a subset of well-separated pairs to be computed and materialized, leading to savings in both space (up to 10x) and time (up to 8x). Our experiments on large real-world and synthetic data sets using a 48-core machine show that our fastest algorithms outperform the best serial algorithms for the problems by 11.13--55.89x, and existing parallel algorithms by at least an order of magnitude.\",\"PeriodicalId\":185981,\"journal\":{\"name\":\"Proceedings of the 2023 ACM Workshop on Highlights of Parallel Computing\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 ACM Workshop on Highlights of Parallel Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3597635.3598025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM Workshop on Highlights of Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597635.3598025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的并行算法,用于生成欧几里得最小生成树和空间聚类层次结构(称为HDBSCAN^*)。我们的方法是基于生成一个分离良好的对分解,然后使用Kruskal的最小生成树算法和双色最接近对计算。为了减少HDBSCAN^*算法的工作量和空间,我们引入了井分离的新概念。我们还给出了一种新的并行分治算法来计算树形图和可达性图,用于EMST和HDBSCAN^*中出现的不同规模的集群的可视化。我们证明了我们的算法在理论上是有效的:它们具有匹配顺序对应的工作(操作次数)和多对数深度(并行时间)。我们实现了我们的算法,并提出了一种内存优化,它只需要计算和实现分离良好的对的子集,从而节省了空间(最多10倍)和时间(最多8倍)。我们使用48核机器对大型真实世界和合成数据集进行的实验表明,我们最快的算法比最好的串行算法的性能高出11.13- 55.89倍,现有并行算法的性能至少高出一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and Hierarchical Spatial Clustering (Abstract)
This paper presents new parallel algorithms for generating Euclidean minimum spanning trees and spatial clustering hierarchies (known as HDBSCAN^*). Our approach is based on generating a well-separated pair decomposition followed by using Kruskal's minimum spanning tree algorithm and bichromatic closest pair computations. We introduce a new notion of well-separation to reduce the work and space of our algorithm for HDBSCAN^*. We also give a new parallel divide-and-conquer algorithm for computing the dendrogram and reachability plots, which are used in visualizing clusters of different scale that arise for both EMST and HDBSCAN^*. We show that our algorithms are theoretically efficient: they have work (number of operations) matching their sequential counterparts, and polylogarithmic depth (parallel time). We implement our algorithms and propose a memory optimization that requires only a subset of well-separated pairs to be computed and materialized, leading to savings in both space (up to 10x) and time (up to 8x). Our experiments on large real-world and synthetic data sets using a 48-core machine show that our fastest algorithms outperform the best serial algorithms for the problems by 11.13--55.89x, and existing parallel algorithms by at least an order of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信