数字眼底图像中红色病灶的检测

G. Kande, T. Savithri, P. Subbaiah, M. Tagore
{"title":"数字眼底图像中红色病灶的检测","authors":"G. Kande, T. Savithri, P. Subbaiah, M. Tagore","doi":"10.1109/ISBI.2009.5193108","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient approach for automatic detection of red lesions in ocular fundus images. The approach uses the intensity information from red and green channels of the same retinal image to correct non-uniform illumination in color fundus images. Matched filtering is utilized to enhance the contrast of red lesions against the background. The enhanced red lesions are then segmented by employing relative entropy based thresholding which can well maintain the spatial structure of the red lesion segments. Then morphological top-hat transformation is used to suppress the enhanced vasculature. SVIvIs are used to classify the candidate red lesions from other dark segments. Experimental evaluation of the proposed approach demonstrates superior performance over other red lesion detection algorithms recently reported in the literature.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Detection of red lesions in digital fundus images\",\"authors\":\"G. Kande, T. Savithri, P. Subbaiah, M. Tagore\",\"doi\":\"10.1109/ISBI.2009.5193108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient approach for automatic detection of red lesions in ocular fundus images. The approach uses the intensity information from red and green channels of the same retinal image to correct non-uniform illumination in color fundus images. Matched filtering is utilized to enhance the contrast of red lesions against the background. The enhanced red lesions are then segmented by employing relative entropy based thresholding which can well maintain the spatial structure of the red lesion segments. Then morphological top-hat transformation is used to suppress the enhanced vasculature. SVIvIs are used to classify the candidate red lesions from other dark segments. Experimental evaluation of the proposed approach demonstrates superior performance over other red lesion detection algorithms recently reported in the literature.\",\"PeriodicalId\":272938,\"journal\":{\"name\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2009.5193108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

提出了一种有效的眼底图像红色病灶自动检测方法。该方法利用同一张视网膜图像的红、绿通道的亮度信息来校正彩色眼底图像中的光照不均匀性。利用匹配滤波增强红色病灶与背景的对比度。然后采用基于相对熵的阈值分割方法对增强的红色病灶进行分割,可以很好地保持红色病灶片段的空间结构。然后利用形态学顶帽变换抑制血管增强。SVIvIs用于从其他深色区段中对候选红色病变进行分类。实验评估表明,该方法优于文献中最近报道的其他红色病变检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of red lesions in digital fundus images
This paper presents an efficient approach for automatic detection of red lesions in ocular fundus images. The approach uses the intensity information from red and green channels of the same retinal image to correct non-uniform illumination in color fundus images. Matched filtering is utilized to enhance the contrast of red lesions against the background. The enhanced red lesions are then segmented by employing relative entropy based thresholding which can well maintain the spatial structure of the red lesion segments. Then morphological top-hat transformation is used to suppress the enhanced vasculature. SVIvIs are used to classify the candidate red lesions from other dark segments. Experimental evaluation of the proposed approach demonstrates superior performance over other red lesion detection algorithms recently reported in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信