基于独立分量分析的k均值聚类播种方法

T. Onoda, Miho Sakai, S. Yamada
{"title":"基于独立分量分析的k均值聚类播种方法","authors":"T. Onoda, Miho Sakai, S. Yamada","doi":"10.1109/WI-IAT.2011.29","DOIUrl":null,"url":null,"abstract":"The k-means clustering method is a widely used clustering technique for the Web because of its simplicity and speed. However, the clustering result depends heavily on the chosen initial clustering centers, which are chosen uniformly at random from the data points. We propose a seeding method based on the independent component analysis for the k-means clustering method. We evaluate the performance of our proposed method and compare it with other seeding methods by using benchmark datasets. We applied our proposed method to a Web corpus, which is provided by ODP. The experiments show that the normalized mutual information of our proposed method is better than the normalized mutual information of k-means clustering method and k-means++ clustering method. Therefore, the proposed method is useful for Web corpus.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Independent Component Analysis Based Seeding Method for K-Means Clustering\",\"authors\":\"T. Onoda, Miho Sakai, S. Yamada\",\"doi\":\"10.1109/WI-IAT.2011.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The k-means clustering method is a widely used clustering technique for the Web because of its simplicity and speed. However, the clustering result depends heavily on the chosen initial clustering centers, which are chosen uniformly at random from the data points. We propose a seeding method based on the independent component analysis for the k-means clustering method. We evaluate the performance of our proposed method and compare it with other seeding methods by using benchmark datasets. We applied our proposed method to a Web corpus, which is provided by ODP. The experiments show that the normalized mutual information of our proposed method is better than the normalized mutual information of k-means clustering method and k-means++ clustering method. Therefore, the proposed method is useful for Web corpus.\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

k-均值聚类方法是一种应用广泛的网络聚类技术,具有简单、快速等优点。然而,聚类结果在很大程度上取决于所选择的初始聚类中心,这些中心是从数据点中均匀随机选择的。针对k-means聚类方法,提出了一种基于独立分量分析的种子方法。我们通过使用基准数据集评估了我们提出的方法的性能,并将其与其他播种方法进行了比较。我们将所提出的方法应用于ODP提供的Web语料库。实验表明,本文方法的互信息归一化优于k-means聚类方法和k-means++聚类方法的互信息归一化。因此,所提出的方法对Web语料库是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent Component Analysis Based Seeding Method for K-Means Clustering
The k-means clustering method is a widely used clustering technique for the Web because of its simplicity and speed. However, the clustering result depends heavily on the chosen initial clustering centers, which are chosen uniformly at random from the data points. We propose a seeding method based on the independent component analysis for the k-means clustering method. We evaluate the performance of our proposed method and compare it with other seeding methods by using benchmark datasets. We applied our proposed method to a Web corpus, which is provided by ODP. The experiments show that the normalized mutual information of our proposed method is better than the normalized mutual information of k-means clustering method and k-means++ clustering method. Therefore, the proposed method is useful for Web corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信