基于MRI数据的头颈部肿瘤自动三维检测与分割

Baixiang Zhao, J. Soraghan, D. Grose, T. Doshi, G. D. Caterina
{"title":"基于MRI数据的头颈部肿瘤自动三维检测与分割","authors":"Baixiang Zhao, J. Soraghan, D. Grose, T. Doshi, G. D. Caterina","doi":"10.1109/EUVIP.2018.8611759","DOIUrl":null,"url":null,"abstract":"A novel algorithm for automatic head and neck 3D tumour segmentation from magnetic resonance imaging (MRI) is presented. The proposed algorithm pre-processes the MRI data slices to enhance quality and reduce artefacts. An intensity standardisation process is performed between slices, followed by cancer region segmentation of central slice, to get the correct intensity range and rough location of tumour regions. Fourier interpolation is applied to create isotropic 3D MRI volume. A new location-constrained 3D level set method segments the tumour from the interpolated MRI volume. The proposed algorithm is tested on real MRI data. The results show that the novel 3D tumour volume extraction algorithm has an improved dice score and F -measure when compared to the previous 2D and 3D segmentation method.","PeriodicalId":252212,"journal":{"name":"2018 7th European Workshop on Visual Information Processing (EUVIP)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic 3D Detection and Segmentation of Head and Neck Cancer from MRI Data\",\"authors\":\"Baixiang Zhao, J. Soraghan, D. Grose, T. Doshi, G. D. Caterina\",\"doi\":\"10.1109/EUVIP.2018.8611759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel algorithm for automatic head and neck 3D tumour segmentation from magnetic resonance imaging (MRI) is presented. The proposed algorithm pre-processes the MRI data slices to enhance quality and reduce artefacts. An intensity standardisation process is performed between slices, followed by cancer region segmentation of central slice, to get the correct intensity range and rough location of tumour regions. Fourier interpolation is applied to create isotropic 3D MRI volume. A new location-constrained 3D level set method segments the tumour from the interpolated MRI volume. The proposed algorithm is tested on real MRI data. The results show that the novel 3D tumour volume extraction algorithm has an improved dice score and F -measure when compared to the previous 2D and 3D segmentation method.\",\"PeriodicalId\":252212,\"journal\":{\"name\":\"2018 7th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2018.8611759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2018.8611759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于磁共振成像(MRI)的头颈部三维肿瘤自动分割算法。该算法对MRI数据切片进行预处理,提高图像质量,减少伪影。在切片之间进行强度标准化处理,然后对中心切片进行肿瘤区域分割,得到正确的肿瘤区域强度范围和大致位置。采用傅里叶插值法创建各向同性三维MRI体。一种新的位置约束的三维水平集方法从内插的MRI体积中分割肿瘤。在真实的MRI数据上对该算法进行了验证。实验结果表明,与之前的二维和三维分割方法相比,新的三维肿瘤体积提取算法具有更高的dice score和F -measure。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic 3D Detection and Segmentation of Head and Neck Cancer from MRI Data
A novel algorithm for automatic head and neck 3D tumour segmentation from magnetic resonance imaging (MRI) is presented. The proposed algorithm pre-processes the MRI data slices to enhance quality and reduce artefacts. An intensity standardisation process is performed between slices, followed by cancer region segmentation of central slice, to get the correct intensity range and rough location of tumour regions. Fourier interpolation is applied to create isotropic 3D MRI volume. A new location-constrained 3D level set method segments the tumour from the interpolated MRI volume. The proposed algorithm is tested on real MRI data. The results show that the novel 3D tumour volume extraction algorithm has an improved dice score and F -measure when compared to the previous 2D and 3D segmentation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信