估计全或无依从性随机临床试验的平均治疗效果

Zhiwei Zhang, Zonghui Hu, D. Follmann, L. Nie
{"title":"估计全或无依从性随机临床试验的平均治疗效果","authors":"Zhiwei Zhang, Zonghui Hu, D. Follmann, L. Nie","doi":"10.1214/22-aoas1627","DOIUrl":null,"url":null,"abstract":"Noncompliance is a common intercurrent event in randomized clinical trials that raises important questions about analytical objectives and approaches. Motivated by the Multiple Risk Factor Intervention Trial (MRFIT), we consider how to estimate the average treatment effect (ATE) in randomized trials with all-or-none compliance. Confounding is a major challenge in estimating the ATE, and conventional methods for confounding adjustment typically require the assumption of no unmeasured confounders, which may be difficult to justify. Using randomized treatment assignment as an instrumental variable, the ATE can be identified in the presence of unmeasured confounders under suitable assumptions, including an assumption that limits the effect-modifying activities of unmeasured confounders. We describe and compare several estimation methods based on different modeling assumptions. Some of these methods are able to incorporate information from auxiliary covariates for improved efficiency without introducing bias. The different methods are compared in a simulation study and applied to the MRFIT.","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the average treatment effect in randomized clinical trials with all-or-none compliance\",\"authors\":\"Zhiwei Zhang, Zonghui Hu, D. Follmann, L. Nie\",\"doi\":\"10.1214/22-aoas1627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noncompliance is a common intercurrent event in randomized clinical trials that raises important questions about analytical objectives and approaches. Motivated by the Multiple Risk Factor Intervention Trial (MRFIT), we consider how to estimate the average treatment effect (ATE) in randomized trials with all-or-none compliance. Confounding is a major challenge in estimating the ATE, and conventional methods for confounding adjustment typically require the assumption of no unmeasured confounders, which may be difficult to justify. Using randomized treatment assignment as an instrumental variable, the ATE can be identified in the presence of unmeasured confounders under suitable assumptions, including an assumption that limits the effect-modifying activities of unmeasured confounders. We describe and compare several estimation methods based on different modeling assumptions. Some of these methods are able to incorporate information from auxiliary covariates for improved efficiency without introducing bias. The different methods are compared in a simulation study and applied to the MRFIT.\",\"PeriodicalId\":188068,\"journal\":{\"name\":\"The Annals of Applied Statistics\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Applied Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aoas1627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aoas1627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不依从性是随机临床试验中常见的并发事件,对分析目标和方法提出了重要问题。受多危险因素干预试验(MRFIT)的启发,我们考虑如何在全依从性或无依从性的随机试验中估计平均治疗效果(ATE)。混淆是估计ATE的主要挑战,而传统的混淆调整方法通常需要假设没有未测量的混杂因素,这可能很难证明。使用随机治疗分配作为工具变量,在适当的假设下,ATE可以在存在未测量混杂因素的情况下识别,包括限制未测量混杂因素的效应修饰活性的假设。我们描述并比较了几种基于不同建模假设的估计方法。其中一些方法能够结合辅助协变量的信息来提高效率,而不会引入偏差。在模拟研究中比较了不同的方法,并将其应用于MRFIT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the average treatment effect in randomized clinical trials with all-or-none compliance
Noncompliance is a common intercurrent event in randomized clinical trials that raises important questions about analytical objectives and approaches. Motivated by the Multiple Risk Factor Intervention Trial (MRFIT), we consider how to estimate the average treatment effect (ATE) in randomized trials with all-or-none compliance. Confounding is a major challenge in estimating the ATE, and conventional methods for confounding adjustment typically require the assumption of no unmeasured confounders, which may be difficult to justify. Using randomized treatment assignment as an instrumental variable, the ATE can be identified in the presence of unmeasured confounders under suitable assumptions, including an assumption that limits the effect-modifying activities of unmeasured confounders. We describe and compare several estimation methods based on different modeling assumptions. Some of these methods are able to incorporate information from auxiliary covariates for improved efficiency without introducing bias. The different methods are compared in a simulation study and applied to the MRFIT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信