利用层次直方图表示对EM聚类算法进行增强

A. Denisova, V. Sergeyev
{"title":"利用层次直方图表示对EM聚类算法进行增强","authors":"A. Denisova, V. Sergeyev","doi":"10.1109/ISPA.2017.8073566","DOIUrl":null,"url":null,"abstract":"This paper is devoted to EM clustering improvement using hierarchical multivariate histogram for probability density representation. We propose to store and operate with the image histogram by means of a special tree data structure. This allows to speed up computations in the case of multivariate input. We also answer the questions of the algorithm initialization and offer an initialization rule, which exploits the proposed histogram-tree structure. We have tested our algorithm modification and initialization rule using remote sensing images. Obtained results have confirmed that the modified algorithm is faster and the initialization rule provides better clustering in comparison with the traditional EM algorithm implementation.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using hierarchical histogram representation for the EM clustering algorithm enhancement\",\"authors\":\"A. Denisova, V. Sergeyev\",\"doi\":\"10.1109/ISPA.2017.8073566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to EM clustering improvement using hierarchical multivariate histogram for probability density representation. We propose to store and operate with the image histogram by means of a special tree data structure. This allows to speed up computations in the case of multivariate input. We also answer the questions of the algorithm initialization and offer an initialization rule, which exploits the proposed histogram-tree structure. We have tested our algorithm modification and initialization rule using remote sensing images. Obtained results have confirmed that the modified algorithm is faster and the initialization rule provides better clustering in comparison with the traditional EM algorithm implementation.\",\"PeriodicalId\":117602,\"journal\":{\"name\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2017.8073566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了利用分层多元直方图进行概率密度表示的EM聚类改进。我们提出用一种特殊的树状数据结构对图像直方图进行存储和操作。这允许在多元输入的情况下加快计算速度。我们还回答了算法初始化的问题,并提供了一个初始化规则,该规则利用了所提出的直方图树结构。我们使用遥感图像测试了我们的算法修改和初始化规则。实验结果表明,与传统的EM算法实现相比,改进算法速度更快,初始化规则提供了更好的聚类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using hierarchical histogram representation for the EM clustering algorithm enhancement
This paper is devoted to EM clustering improvement using hierarchical multivariate histogram for probability density representation. We propose to store and operate with the image histogram by means of a special tree data structure. This allows to speed up computations in the case of multivariate input. We also answer the questions of the algorithm initialization and offer an initialization rule, which exploits the proposed histogram-tree structure. We have tested our algorithm modification and initialization rule using remote sensing images. Obtained results have confirmed that the modified algorithm is faster and the initialization rule provides better clustering in comparison with the traditional EM algorithm implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信