基于空间模糊c均值聚类的CT图像分割

A. Sajith, S. Hariharan
{"title":"基于空间模糊c均值聚类的CT图像分割","authors":"A. Sajith, S. Hariharan","doi":"10.1109/ECS.2015.7124937","DOIUrl":null,"url":null,"abstract":"Image processing and Pattern Recognition are very much important in the extraction of clinical information from images. A hybrid image processing method is presented based on spatial fuzzy C means clustering combined with parametric deformable model for CT liver images. The Spatial fuzzy c-means using pixel classification and parametric deformable models are utilizing dynamic variational boundaries for image segmentation. The controlling parameters of parametric deformable model evolution are also estimated from the results of clustering. Thus we can improve the segmentation of liver image thereby increasing the detection of tumour effectively. Also we can segment out the liver and the tumor with increased efficiency and robustness.","PeriodicalId":202856,"journal":{"name":"2015 2nd International Conference on Electronics and Communication Systems (ICECS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spatial fuzzy C-means clustering based segmentation on CT images\",\"authors\":\"A. Sajith, S. Hariharan\",\"doi\":\"10.1109/ECS.2015.7124937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image processing and Pattern Recognition are very much important in the extraction of clinical information from images. A hybrid image processing method is presented based on spatial fuzzy C means clustering combined with parametric deformable model for CT liver images. The Spatial fuzzy c-means using pixel classification and parametric deformable models are utilizing dynamic variational boundaries for image segmentation. The controlling parameters of parametric deformable model evolution are also estimated from the results of clustering. Thus we can improve the segmentation of liver image thereby increasing the detection of tumour effectively. Also we can segment out the liver and the tumor with increased efficiency and robustness.\",\"PeriodicalId\":202856,\"journal\":{\"name\":\"2015 2nd International Conference on Electronics and Communication Systems (ICECS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Electronics and Communication Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECS.2015.7124937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Electronics and Communication Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECS.2015.7124937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

从图像中提取临床信息,图像处理和模式识别是非常重要的。提出了一种基于空间模糊C均值聚类与参数变形模型相结合的CT肝脏图像混合处理方法。采用像素分类和参数化变形模型的空间模糊c均值方法利用动态变分边界进行图像分割。根据聚类结果估计了参数化变形模型演化的控制参数。这样可以改进肝脏图像的分割,从而有效地提高肿瘤的检出率。我们还可以以更高的效率和健壮性分割肝脏和肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial fuzzy C-means clustering based segmentation on CT images
Image processing and Pattern Recognition are very much important in the extraction of clinical information from images. A hybrid image processing method is presented based on spatial fuzzy C means clustering combined with parametric deformable model for CT liver images. The Spatial fuzzy c-means using pixel classification and parametric deformable models are utilizing dynamic variational boundaries for image segmentation. The controlling parameters of parametric deformable model evolution are also estimated from the results of clustering. Thus we can improve the segmentation of liver image thereby increasing the detection of tumour effectively. Also we can segment out the liver and the tumor with increased efficiency and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信