对于任意单向排列的任意NP,可忽略错误概率的5轮计算零知识证明

Chunming Tang, D. Pei, Z. Yao
{"title":"对于任意单向排列的任意NP,可忽略错误概率的5轮计算零知识证明","authors":"Chunming Tang, D. Pei, Z. Yao","doi":"10.1109/ISECS.2008.88","DOIUrl":null,"url":null,"abstract":"We will construct a perfectly hiding commitment in two rounds from any one-way permutation, which is a negation of this result that O(n/(log n)) rounds is the tight lower bound on the rounds complexity of perfectly hiding commitments from any one-way permutation. Based on our commitments, we will construct a computational zero-knowledge proof for any NP that achieves negligible error probability in 5 rounds of interaction, assuming only the existence of a one-way permutation.","PeriodicalId":144075,"journal":{"name":"2008 International Symposium on Electronic Commerce and Security","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"5-Round Computational Zero-Knowledge Proof with Negligible Error Probability for Any NP from Any One-Way Permutation\",\"authors\":\"Chunming Tang, D. Pei, Z. Yao\",\"doi\":\"10.1109/ISECS.2008.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We will construct a perfectly hiding commitment in two rounds from any one-way permutation, which is a negation of this result that O(n/(log n)) rounds is the tight lower bound on the rounds complexity of perfectly hiding commitments from any one-way permutation. Based on our commitments, we will construct a computational zero-knowledge proof for any NP that achieves negligible error probability in 5 rounds of interaction, assuming only the existence of a one-way permutation.\",\"PeriodicalId\":144075,\"journal\":{\"name\":\"2008 International Symposium on Electronic Commerce and Security\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Electronic Commerce and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISECS.2008.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Electronic Commerce and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISECS.2008.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们将从任意单向排列构造一个两轮完全隐藏承诺,这是O(n/(log n))轮是任意单向排列完全隐藏承诺的轮复杂度的紧下界这一结果的否定。基于我们的承诺,我们将为任何在5轮交互中实现可忽略不计的错误概率的NP构建一个计算零知识证明,假设只存在单向排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
5-Round Computational Zero-Knowledge Proof with Negligible Error Probability for Any NP from Any One-Way Permutation
We will construct a perfectly hiding commitment in two rounds from any one-way permutation, which is a negation of this result that O(n/(log n)) rounds is the tight lower bound on the rounds complexity of perfectly hiding commitments from any one-way permutation. Based on our commitments, we will construct a computational zero-knowledge proof for any NP that achieves negligible error probability in 5 rounds of interaction, assuming only the existence of a one-way permutation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信