无次图和浅次图的分隔定理及其应用

Christian Wulff-Nilsen
{"title":"无次图和浅次图的分隔定理及其应用","authors":"Christian Wulff-Nilsen","doi":"10.1109/FOCS.2011.15","DOIUrl":null,"url":null,"abstract":"Alon, Seymour, and Thomas generalized Lipton and Tarjan's planar separator theorem and showed that a $K_h$-minor free graph with $n$ vertices has a separator of size at most $h^{3/2}\\sqrt n$. They gave an algorithm that, given a graph $G$ with $m$ edges and $n$ vertices and given an integer $h\\geq 1$, outputs in $O(\\sqrt{hn}m)$ time such a separator or a $K_h$-minor of $G$. Plot kin, Rao, and Smith gave an $O(hm\\sqrt{n\\log n})$ time algorithm to find a separator of size $O(h\\sqrt{n\\log n})$. Kawara bayashi and Reed improved the bound on the size of the separator to $h\\sqrt n$ and gave an algorithm that finds such a separator in $O(n^{1 + \\epsilon})$ time for any constant $\\epsilon &gt, 0$, assuming $h$ is constant. This algorithm has an extremely large dependency on $h$ in the running time (some power tower of $h$ whose height is itself a function of $h$), making it impractical even for small $h$. We are interested in a small polynomial time dependency on $h$ and we show how to find an $O(h\\sqrt{n\\log n})$-size separator or report that $G$ has a $K_h$-minor in $O(\\poly(h)n^{5/4 + \\epsilon})$ time for any constant $\\epsilon &gt, 0$. We also present the first $O(\\poly(h)n)$ time algorithm to find a separator of size $O(n^c)$ for a constant $c","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Separator Theorems for Minor-Free and Shallow Minor-Free Graphs with Applications\",\"authors\":\"Christian Wulff-Nilsen\",\"doi\":\"10.1109/FOCS.2011.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alon, Seymour, and Thomas generalized Lipton and Tarjan's planar separator theorem and showed that a $K_h$-minor free graph with $n$ vertices has a separator of size at most $h^{3/2}\\\\sqrt n$. They gave an algorithm that, given a graph $G$ with $m$ edges and $n$ vertices and given an integer $h\\\\geq 1$, outputs in $O(\\\\sqrt{hn}m)$ time such a separator or a $K_h$-minor of $G$. Plot kin, Rao, and Smith gave an $O(hm\\\\sqrt{n\\\\log n})$ time algorithm to find a separator of size $O(h\\\\sqrt{n\\\\log n})$. Kawara bayashi and Reed improved the bound on the size of the separator to $h\\\\sqrt n$ and gave an algorithm that finds such a separator in $O(n^{1 + \\\\epsilon})$ time for any constant $\\\\epsilon &gt, 0$, assuming $h$ is constant. This algorithm has an extremely large dependency on $h$ in the running time (some power tower of $h$ whose height is itself a function of $h$), making it impractical even for small $h$. We are interested in a small polynomial time dependency on $h$ and we show how to find an $O(h\\\\sqrt{n\\\\log n})$-size separator or report that $G$ has a $K_h$-minor in $O(\\\\poly(h)n^{5/4 + \\\\epsilon})$ time for any constant $\\\\epsilon &gt, 0$. We also present the first $O(\\\\poly(h)n)$ time algorithm to find a separator of size $O(n^c)$ for a constant $c\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

Alon, Seymour和Thomas推广了Lipton和Tarjan的平面分隔定理,证明了具有n个顶点的K_h -次自由图的分隔符的大小不超过$h^{3/2}\sqrt n$。他们给出了一个算法,给定一个有$m$边和$n$顶点的图$G$,给定一个整数$h\geq $ 1$,输出$O(\sqrt{hn}m)$ time这样的分隔符或$G$的$K_h$-次元。Plot kin, Rao和Smith给出了一个$O(hm\sqrt{n\log n})$ time算法来寻找大小为$O(h\sqrt{n\log n})$的分隔符。Kawara bayashi和Reed将分隔符大小的界限改进为$h\sqrt n$,并给出了一个算法,该算法可以在$O(n^{1 + \epsilon})$时间内对任意常数$\epsilon >, 0$找到这样一个分隔符,假设$h$为常数。该算法在运行时间上对$h$有极大的依赖性($h$的一些功率塔,其高度本身就是$h$的函数),使得它即使对于较小的$h$也是不切实际的。我们对一个小的多项式时间依赖于$h$感兴趣,我们展示了如何找到一个$O(h\sqrt{n\log n})$-大小的分隔符,或者报告$G$在$O(\poly(h)n^{5/4 + \epsilon})$时间中有一个$K_h$-次元对于任意常数$\epsilon >, 0$。我们还提出了第一个$O(\poly(h)n)$ time算法,用于为常数$c找到大小为$O(n^c)$的分隔符
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separator Theorems for Minor-Free and Shallow Minor-Free Graphs with Applications
Alon, Seymour, and Thomas generalized Lipton and Tarjan's planar separator theorem and showed that a $K_h$-minor free graph with $n$ vertices has a separator of size at most $h^{3/2}\sqrt n$. They gave an algorithm that, given a graph $G$ with $m$ edges and $n$ vertices and given an integer $h\geq 1$, outputs in $O(\sqrt{hn}m)$ time such a separator or a $K_h$-minor of $G$. Plot kin, Rao, and Smith gave an $O(hm\sqrt{n\log n})$ time algorithm to find a separator of size $O(h\sqrt{n\log n})$. Kawara bayashi and Reed improved the bound on the size of the separator to $h\sqrt n$ and gave an algorithm that finds such a separator in $O(n^{1 + \epsilon})$ time for any constant $\epsilon >, 0$, assuming $h$ is constant. This algorithm has an extremely large dependency on $h$ in the running time (some power tower of $h$ whose height is itself a function of $h$), making it impractical even for small $h$. We are interested in a small polynomial time dependency on $h$ and we show how to find an $O(h\sqrt{n\log n})$-size separator or report that $G$ has a $K_h$-minor in $O(\poly(h)n^{5/4 + \epsilon})$ time for any constant $\epsilon >, 0$. We also present the first $O(\poly(h)n)$ time algorithm to find a separator of size $O(n^c)$ for a constant $c
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信