挖掘多源数据研究工作场所活动模式

Sachin Patel, Ravi Mahamuni, Meghendra Singh, David Clarance, Mayuri Duggirala, Shivani Sharma, Vinay Katiyar, Gauri Deshpande, Amruta Deshmukh, Vaibhav, Vivek Balaraman
{"title":"挖掘多源数据研究工作场所活动模式","authors":"Sachin Patel, Ravi Mahamuni, Meghendra Singh, David Clarance, Mayuri Duggirala, Shivani Sharma, Vinay Katiyar, Gauri Deshpande, Amruta Deshmukh, Vaibhav, Vivek Balaraman","doi":"10.1145/2888451.2888470","DOIUrl":null,"url":null,"abstract":"Examining work activity patterns is a problem of enduring research in organizations. The fortuitous availability of a whole new set of data collection mechanisms such as mobiles, activity loggers, GPS based location detectors, provide us new ways of studying workplace behaviour. We present a data collection framework that helps in collection, anonymization, fusion, processing and mining of behavioural data. We use the framework to study the activities in a research and development team with an aim to find the relationship between behavioural traits, states, and activity patterns. We find partial support for the claim that behavioral states and activity patterns are associated.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining Multi-source Data to Study Workplace Activity Patterns\",\"authors\":\"Sachin Patel, Ravi Mahamuni, Meghendra Singh, David Clarance, Mayuri Duggirala, Shivani Sharma, Vinay Katiyar, Gauri Deshpande, Amruta Deshmukh, Vaibhav, Vivek Balaraman\",\"doi\":\"10.1145/2888451.2888470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Examining work activity patterns is a problem of enduring research in organizations. The fortuitous availability of a whole new set of data collection mechanisms such as mobiles, activity loggers, GPS based location detectors, provide us new ways of studying workplace behaviour. We present a data collection framework that helps in collection, anonymization, fusion, processing and mining of behavioural data. We use the framework to study the activities in a research and development team with an aim to find the relationship between behavioural traits, states, and activity patterns. We find partial support for the claim that behavioral states and activity patterns are associated.\",\"PeriodicalId\":136431,\"journal\":{\"name\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2888451.2888470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

检查工作活动模式是组织中长期研究的一个问题。一套全新的数据收集机制(如手机、活动记录仪、基于GPS的位置探测器)的偶然出现,为我们提供了研究职场行为的新方法。我们提出了一个数据收集框架,有助于行为数据的收集、匿名化、融合、处理和挖掘。我们使用该框架来研究研发团队的活动,目的是找到行为特征、状态和活动模式之间的关系。我们发现行为状态和活动模式相关的说法得到了部分支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Multi-source Data to Study Workplace Activity Patterns
Examining work activity patterns is a problem of enduring research in organizations. The fortuitous availability of a whole new set of data collection mechanisms such as mobiles, activity loggers, GPS based location detectors, provide us new ways of studying workplace behaviour. We present a data collection framework that helps in collection, anonymization, fusion, processing and mining of behavioural data. We use the framework to study the activities in a research and development team with an aim to find the relationship between behavioural traits, states, and activity patterns. We find partial support for the claim that behavioral states and activity patterns are associated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信