在被监测对象或环境的正常和异常情况下对传感数据进行区分

Yinghua Zhou, Xuemei Cai
{"title":"在被监测对象或环境的正常和异常情况下对传感数据进行区分","authors":"Yinghua Zhou, Xuemei Cai","doi":"10.1109/ICNIDC.2009.5360880","DOIUrl":null,"url":null,"abstract":"The huge volume of history sensing data of a wireless sensor network need to be processed and discriminated to help the users of the data to analyze and judge the different situations of the monitored object and environment. A novel approach is proposed to first divide the history sensing data into partitions so that the data, measured when the monitored object or environment is normal, are roughly distinguishable from those measured when the object or environment is abnormal. Then the method uses a new centroid-based clustering algorithm to group the data in the partitions into different clusters. Finally the clusters of data are labeled “normal” or “abnormal” by applying the suggested heuristics.","PeriodicalId":127306,"journal":{"name":"2009 IEEE International Conference on Network Infrastructure and Digital Content","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrimination of sensing data in normal and abnormal situations of the monitored object or environment\",\"authors\":\"Yinghua Zhou, Xuemei Cai\",\"doi\":\"10.1109/ICNIDC.2009.5360880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The huge volume of history sensing data of a wireless sensor network need to be processed and discriminated to help the users of the data to analyze and judge the different situations of the monitored object and environment. A novel approach is proposed to first divide the history sensing data into partitions so that the data, measured when the monitored object or environment is normal, are roughly distinguishable from those measured when the object or environment is abnormal. Then the method uses a new centroid-based clustering algorithm to group the data in the partitions into different clusters. Finally the clusters of data are labeled “normal” or “abnormal” by applying the suggested heuristics.\",\"PeriodicalId\":127306,\"journal\":{\"name\":\"2009 IEEE International Conference on Network Infrastructure and Digital Content\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Network Infrastructure and Digital Content\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIDC.2009.5360880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Network Infrastructure and Digital Content","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2009.5360880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络中海量的历史传感数据需要进行处理和判别,以帮助数据使用者分析和判断被监测对象和环境的不同情况。提出了一种新的方法,首先对历史传感数据进行分区,使被监测对象或环境正常时测量的数据与被监测对象或环境异常时测量的数据大致区分开来。然后采用一种新的基于质心的聚类算法,将分区内的数据分组到不同的聚类中。最后,通过应用建议的启发式方法,将数据簇标记为“正常”或“异常”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrimination of sensing data in normal and abnormal situations of the monitored object or environment
The huge volume of history sensing data of a wireless sensor network need to be processed and discriminated to help the users of the data to analyze and judge the different situations of the monitored object and environment. A novel approach is proposed to first divide the history sensing data into partitions so that the data, measured when the monitored object or environment is normal, are roughly distinguishable from those measured when the object or environment is abnormal. Then the method uses a new centroid-based clustering algorithm to group the data in the partitions into different clusters. Finally the clusters of data are labeled “normal” or “abnormal” by applying the suggested heuristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信