可选择退出的可靠密码强化服务

Chunfu Jia, Shaoqiang Wu, Ding Wang
{"title":"可选择退出的可靠密码强化服务","authors":"Chunfu Jia, Shaoqiang Wu, Ding Wang","doi":"10.1109/SRDS55811.2022.00031","DOIUrl":null,"url":null,"abstract":"As the most dominant authentication mechanism, password-based authentication suffers catastrophic offline password guessing attacks once the authentication server is compromised and the password database is leaked. Password hardening (PH) service, an external/third-party crypto service, has been recently proposed to strengthen password storage and reduce the damage of authentication server compromise. However, all existing schemes are unreliable in that they overlook the important restorable property: PH service opt-out. In existing PH schemes, once the authentication server has subscribed to a PH service, it must adopt this service forever, even if it wants to stop the external/third-party PH service and restore its original password storage (or subscribe to another PH service). To fill the gap, we propose a new PH service called PW-Hero that equips its PH service with an option to terminate its use (i.e., opt-out). In PW-Hero, password authentication is strengthened against offline attacks by adding external secret spices to password records. With the opt-out property, authentication servers can proactively request to end the PH service after successful authentications. Then password records can be securely migrated to their traditional salted hash state, ready for subscription to other PH services. Besides, PW-Hero achieves all existing desirable properties, such as comprehensive verifiability, rate limits against online attacks, and user privacy. We define PW-Hero as a suite of protocols that meet desirable properties and build a simple, secure, and efficient instance. Moreover, we develop a prototype implementation and evaluate its performance, establishing the practicality of our PW-Hero service.","PeriodicalId":143115,"journal":{"name":"2022 41st International Symposium on Reliable Distributed Systems (SRDS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reliable Password Hardening Service with Opt-Out\",\"authors\":\"Chunfu Jia, Shaoqiang Wu, Ding Wang\",\"doi\":\"10.1109/SRDS55811.2022.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the most dominant authentication mechanism, password-based authentication suffers catastrophic offline password guessing attacks once the authentication server is compromised and the password database is leaked. Password hardening (PH) service, an external/third-party crypto service, has been recently proposed to strengthen password storage and reduce the damage of authentication server compromise. However, all existing schemes are unreliable in that they overlook the important restorable property: PH service opt-out. In existing PH schemes, once the authentication server has subscribed to a PH service, it must adopt this service forever, even if it wants to stop the external/third-party PH service and restore its original password storage (or subscribe to another PH service). To fill the gap, we propose a new PH service called PW-Hero that equips its PH service with an option to terminate its use (i.e., opt-out). In PW-Hero, password authentication is strengthened against offline attacks by adding external secret spices to password records. With the opt-out property, authentication servers can proactively request to end the PH service after successful authentications. Then password records can be securely migrated to their traditional salted hash state, ready for subscription to other PH services. Besides, PW-Hero achieves all existing desirable properties, such as comprehensive verifiability, rate limits against online attacks, and user privacy. We define PW-Hero as a suite of protocols that meet desirable properties and build a simple, secure, and efficient instance. Moreover, we develop a prototype implementation and evaluate its performance, establishing the practicality of our PW-Hero service.\",\"PeriodicalId\":143115,\"journal\":{\"name\":\"2022 41st International Symposium on Reliable Distributed Systems (SRDS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 41st International Symposium on Reliable Distributed Systems (SRDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS55811.2022.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 41st International Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS55811.2022.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于密码的身份验证作为目前最主流的身份验证机制,一旦身份验证服务器被攻破,密码数据库泄露,就会遭受灾难性的离线猜密码攻击。PH (Password hardening)服务是一种外部/第三方加密服务,最近被提出用于加强密码存储,减少认证服务器泄露的损害。然而,所有现有的方案都是不可靠的,因为它们忽略了重要的可恢复属性:PH服务选择退出。在现有的PH方案中,一旦认证服务器订阅了PH服务,它就必须永远采用该服务,即使它想要停止外部/第三方PH服务并恢复其原始密码存储(或订阅另一个PH服务)。为了填补这一空白,我们提出了一种名为PW-Hero的新PH服务,该服务为其PH服务配备了终止使用的选项(即选择退出)。在PW-Hero中,通过向密码记录添加外部秘密香料,加强了密码身份验证以抵御离线攻击。使用opt-out属性,身份验证服务器可以在身份验证成功后主动请求结束PH服务。然后,可以将密码记录安全地迁移到传统的盐渍散列状态,准备订阅其他PH服务。此外,PW-Hero实现了所有现有的理想属性,如全面的可验证性、对在线攻击的速率限制和用户隐私。我们将PW-Hero定义为满足所需属性的一套协议,并构建一个简单、安全和高效的实例。此外,我们开发了一个原型实现并对其性能进行了评估,以确定我们的PW-Hero服务的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable Password Hardening Service with Opt-Out
As the most dominant authentication mechanism, password-based authentication suffers catastrophic offline password guessing attacks once the authentication server is compromised and the password database is leaked. Password hardening (PH) service, an external/third-party crypto service, has been recently proposed to strengthen password storage and reduce the damage of authentication server compromise. However, all existing schemes are unreliable in that they overlook the important restorable property: PH service opt-out. In existing PH schemes, once the authentication server has subscribed to a PH service, it must adopt this service forever, even if it wants to stop the external/third-party PH service and restore its original password storage (or subscribe to another PH service). To fill the gap, we propose a new PH service called PW-Hero that equips its PH service with an option to terminate its use (i.e., opt-out). In PW-Hero, password authentication is strengthened against offline attacks by adding external secret spices to password records. With the opt-out property, authentication servers can proactively request to end the PH service after successful authentications. Then password records can be securely migrated to their traditional salted hash state, ready for subscription to other PH services. Besides, PW-Hero achieves all existing desirable properties, such as comprehensive verifiability, rate limits against online attacks, and user privacy. We define PW-Hero as a suite of protocols that meet desirable properties and build a simple, secure, and efficient instance. Moreover, we develop a prototype implementation and evaluate its performance, establishing the practicality of our PW-Hero service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信