用于深度传感器捕获的三维数据去噪的自适应滤波器

Somar Boubou, T. Narikiyo, M. Kawanishi
{"title":"用于深度传感器捕获的三维数据去噪的自适应滤波器","authors":"Somar Boubou, T. Narikiyo, M. Kawanishi","doi":"10.1109/3DTV.2017.8280401","DOIUrl":null,"url":null,"abstract":"Current consumer depth sensors produce depth maps that are often noisy and lack sufficient detail. Enhancing the quality of the 3D depth data obtained from compact depth Kinect-like sensors is an increasingly popular research area. Although depth data is known to carry a signal-dependent noise, the state-of-the-art denoising methods tend to employ denoising techniques which are independent of the depth signal itself. In this paper, we present a novel adaptive denoising filter to enhance object recognition from 3D depth data. We evaluate the performance of our proposed denoising filter against other state-of-the-art filters based on the enhancement of object recognition accuracy achieved after denoising the raw data with each filter. In order to perform object recognition from depth data, we make use of Differential Histogram of Normal Vectors (DHONV) features along with a linear SVM. Experiments show that our proposed filter outperformed the state-of-the-art de-noising methods.","PeriodicalId":279013,"journal":{"name":"2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive filter for denoising 3D data captured by depth sensors\",\"authors\":\"Somar Boubou, T. Narikiyo, M. Kawanishi\",\"doi\":\"10.1109/3DTV.2017.8280401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current consumer depth sensors produce depth maps that are often noisy and lack sufficient detail. Enhancing the quality of the 3D depth data obtained from compact depth Kinect-like sensors is an increasingly popular research area. Although depth data is known to carry a signal-dependent noise, the state-of-the-art denoising methods tend to employ denoising techniques which are independent of the depth signal itself. In this paper, we present a novel adaptive denoising filter to enhance object recognition from 3D depth data. We evaluate the performance of our proposed denoising filter against other state-of-the-art filters based on the enhancement of object recognition accuracy achieved after denoising the raw data with each filter. In order to perform object recognition from depth data, we make use of Differential Histogram of Normal Vectors (DHONV) features along with a linear SVM. Experiments show that our proposed filter outperformed the state-of-the-art de-noising methods.\",\"PeriodicalId\":279013,\"journal\":{\"name\":\"2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DTV.2017.8280401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2017.8280401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目前的消费者深度传感器产生的深度图通常是有噪声的,缺乏足够的细节。提高由紧凑的类kinect深度传感器获得的三维深度数据的质量是一个日益流行的研究领域。虽然已知深度数据带有信号相关的噪声,但最先进的去噪方法倾向于采用与深度信号本身无关的去噪技术。本文提出了一种新的自适应去噪滤波器,以增强三维深度数据的目标识别能力。我们评估了我们提出的去噪滤波器与其他最先进的滤波器的性能,基于在使用每个滤波器对原始数据去噪后实现的目标识别精度的增强。为了从深度数据中进行目标识别,我们使用了法向量差分直方图(DHONV)特征以及线性支持向量机。实验表明,我们提出的滤波器优于最先进的去噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive filter for denoising 3D data captured by depth sensors
Current consumer depth sensors produce depth maps that are often noisy and lack sufficient detail. Enhancing the quality of the 3D depth data obtained from compact depth Kinect-like sensors is an increasingly popular research area. Although depth data is known to carry a signal-dependent noise, the state-of-the-art denoising methods tend to employ denoising techniques which are independent of the depth signal itself. In this paper, we present a novel adaptive denoising filter to enhance object recognition from 3D depth data. We evaluate the performance of our proposed denoising filter against other state-of-the-art filters based on the enhancement of object recognition accuracy achieved after denoising the raw data with each filter. In order to perform object recognition from depth data, we make use of Differential Histogram of Normal Vectors (DHONV) features along with a linear SVM. Experiments show that our proposed filter outperformed the state-of-the-art de-noising methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信