基于Fast SystemC模拟器的脉冲神经网络(SNN)大规模数字仿真

H. Soleimani, A. Ahmadi, Mohammad Bavandpour, A. Amirsoleimani, Mark Zwolinski
{"title":"基于Fast SystemC模拟器的脉冲神经网络(SNN)大规模数字仿真","authors":"H. Soleimani, A. Ahmadi, Mohammad Bavandpour, A. Amirsoleimani, Mark Zwolinski","doi":"10.1109/UKSIM.2012.105","DOIUrl":null,"url":null,"abstract":"Since biological neural systems contain big number of neurons working in parallel, simulation of such dynamic system is a real challenge. The main objective of this paper is to speed up the simulation performance of SystemC designs at the RTL abstraction level using the high degree of parallelism afforded by graphics processors (GPUs) for large scale SNN with proposed structure in pattern classification field. Simulation results show 100 times speedup for the proposed SNN structure on the GPU compared with the CPU version. In addition, CPU memory has problems when trained for more than 120K cells but GPU can simulate up to 40 million neurons.","PeriodicalId":405479,"journal":{"name":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Large Scale Digital Simulation of Spiking Neural Networks (SNN) on Fast SystemC Simulator\",\"authors\":\"H. Soleimani, A. Ahmadi, Mohammad Bavandpour, A. Amirsoleimani, Mark Zwolinski\",\"doi\":\"10.1109/UKSIM.2012.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since biological neural systems contain big number of neurons working in parallel, simulation of such dynamic system is a real challenge. The main objective of this paper is to speed up the simulation performance of SystemC designs at the RTL abstraction level using the high degree of parallelism afforded by graphics processors (GPUs) for large scale SNN with proposed structure in pattern classification field. Simulation results show 100 times speedup for the proposed SNN structure on the GPU compared with the CPU version. In addition, CPU memory has problems when trained for more than 120K cells but GPU can simulate up to 40 million neurons.\",\"PeriodicalId\":405479,\"journal\":{\"name\":\"2012 UKSim 14th International Conference on Computer Modelling and Simulation\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 UKSim 14th International Conference on Computer Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKSIM.2012.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSIM.2012.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于生物神经系统包含大量并行工作的神经元,因此对这种动态系统的仿真是一个真正的挑战。本文的主要目的是利用图形处理器(gpu)提供的高度并行性,在RTL抽象层加速SystemC设计的仿真性能,用于模式分类领域中具有所提出结构的大规模SNN。仿真结果表明,与CPU版本相比,所提出的SNN结构在GPU上的速度提高了100倍。此外,CPU内存在训练超过12万个细胞时存在问题,但GPU可以模拟多达4000万个神经元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Large Scale Digital Simulation of Spiking Neural Networks (SNN) on Fast SystemC Simulator
Since biological neural systems contain big number of neurons working in parallel, simulation of such dynamic system is a real challenge. The main objective of this paper is to speed up the simulation performance of SystemC designs at the RTL abstraction level using the high degree of parallelism afforded by graphics processors (GPUs) for large scale SNN with proposed structure in pattern classification field. Simulation results show 100 times speedup for the proposed SNN structure on the GPU compared with the CPU version. In addition, CPU memory has problems when trained for more than 120K cells but GPU can simulate up to 40 million neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信