P. Rajan, P. Burlina, M. Chen, D. Edell, B. Jedynak, N. Mehta, Ayushi Sinha, Gregory Hager
{"title":"自主机载近地物体探测","authors":"P. Rajan, P. Burlina, M. Chen, D. Edell, B. Jedynak, N. Mehta, Ayushi Sinha, Gregory Hager","doi":"10.1109/AIPR.2015.7444551","DOIUrl":null,"url":null,"abstract":"Most large asteroid population discovery has been accomplished to date by Earth-based telescopes. It is speculated that most of the smaller Near Earth Objects (NEOs) that are less than 100 meters in diameter, whose impact can create substantial city-size damage, have not yet been discovered. Many asteroids cannot be detected with an Earth-based telescope given their size and/or their location with respect to the Sun. We are investigating the feasibility of deploying asteroid detection algorithms on-board a spacecraft, thereby minimizing the expense and need to downlink large collection of images. Having autonomous on-board image analysis algorithms enables the deployment of a spacecraft at approximately 0.7 AU heliocentric or Earth-Sun L1/L2 halo orbits, removing some of the challenges associated with detecting asteroids with Earth-based telescopes. We describe an image analysis algorithmic pipeline developed and targeted for on-board asteroid detection and show that its performance is consistent with deployment on flight-qualified hardware.","PeriodicalId":440673,"journal":{"name":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Autonomous on-board Near Earth Object detection\",\"authors\":\"P. Rajan, P. Burlina, M. Chen, D. Edell, B. Jedynak, N. Mehta, Ayushi Sinha, Gregory Hager\",\"doi\":\"10.1109/AIPR.2015.7444551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most large asteroid population discovery has been accomplished to date by Earth-based telescopes. It is speculated that most of the smaller Near Earth Objects (NEOs) that are less than 100 meters in diameter, whose impact can create substantial city-size damage, have not yet been discovered. Many asteroids cannot be detected with an Earth-based telescope given their size and/or their location with respect to the Sun. We are investigating the feasibility of deploying asteroid detection algorithms on-board a spacecraft, thereby minimizing the expense and need to downlink large collection of images. Having autonomous on-board image analysis algorithms enables the deployment of a spacecraft at approximately 0.7 AU heliocentric or Earth-Sun L1/L2 halo orbits, removing some of the challenges associated with detecting asteroids with Earth-based telescopes. We describe an image analysis algorithmic pipeline developed and targeted for on-board asteroid detection and show that its performance is consistent with deployment on flight-qualified hardware.\",\"PeriodicalId\":440673,\"journal\":{\"name\":\"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2015.7444551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2015.7444551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Most large asteroid population discovery has been accomplished to date by Earth-based telescopes. It is speculated that most of the smaller Near Earth Objects (NEOs) that are less than 100 meters in diameter, whose impact can create substantial city-size damage, have not yet been discovered. Many asteroids cannot be detected with an Earth-based telescope given their size and/or their location with respect to the Sun. We are investigating the feasibility of deploying asteroid detection algorithms on-board a spacecraft, thereby minimizing the expense and need to downlink large collection of images. Having autonomous on-board image analysis algorithms enables the deployment of a spacecraft at approximately 0.7 AU heliocentric or Earth-Sun L1/L2 halo orbits, removing some of the challenges associated with detecting asteroids with Earth-based telescopes. We describe an image analysis algorithmic pipeline developed and targeted for on-board asteroid detection and show that its performance is consistent with deployment on flight-qualified hardware.