使用人工神经网络的视频检测Api

Budiman Rabbani, Ramaditia Dwiyansaputra
{"title":"使用人工神经网络的视频检测Api","authors":"Budiman Rabbani, Ramaditia Dwiyansaputra","doi":"10.29303/JTIKA.V3I1.114","DOIUrl":null,"url":null,"abstract":"Abstract \nThe camera is one of the tools used to collect images. Cameras are often used for the safety of homes, highways and others. Then in this study camera captures are used to support fire objects because fire is one of the causes of safety that can be controlled. Therefore, by utilizing a capture camera will see the best model of backpropagation neural network by combining the local binary patern (LBP) feature extraction method and the Gray Level Co-occurrence Matrix (GLCM) to access the fire. Then to evaluate the performance of the model created using three parameters that contain accuracy, recall, precision. The data in this study consisted of videos with variations of fire and non-fire videos. Based on the final results of the study, accuracy, remember, the best precision obtained simultaneously 96%, 97%, 97%. Then the validation process was done using 30 videos with a variation of 15 fire videos and 15 non-fire videos and obtained an accuracy of 86.6% with an average time value of 6.029 minutes.","PeriodicalId":197519,"journal":{"name":"Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA )","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deteksi Api Pada Video Menggunakan Metode Artificial Neural Network\",\"authors\":\"Budiman Rabbani, Ramaditia Dwiyansaputra\",\"doi\":\"10.29303/JTIKA.V3I1.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract \\nThe camera is one of the tools used to collect images. Cameras are often used for the safety of homes, highways and others. Then in this study camera captures are used to support fire objects because fire is one of the causes of safety that can be controlled. Therefore, by utilizing a capture camera will see the best model of backpropagation neural network by combining the local binary patern (LBP) feature extraction method and the Gray Level Co-occurrence Matrix (GLCM) to access the fire. Then to evaluate the performance of the model created using three parameters that contain accuracy, recall, precision. The data in this study consisted of videos with variations of fire and non-fire videos. Based on the final results of the study, accuracy, remember, the best precision obtained simultaneously 96%, 97%, 97%. Then the validation process was done using 30 videos with a variation of 15 fire videos and 15 non-fire videos and obtained an accuracy of 86.6% with an average time value of 6.029 minutes.\",\"PeriodicalId\":197519,\"journal\":{\"name\":\"Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA )\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29303/JTIKA.V3I1.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/JTIKA.V3I1.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摄像机是采集图像的工具之一。摄像头通常用于家庭、高速公路和其他地方的安全。在这项研究中,摄像机捕捉被用来支持火灾物体,因为火灾是可以控制的安全原因之一。因此,通过利用捕捉相机将看到的最佳模型反向传播神经网络结合局部二值模式(LBP)特征提取方法和灰度共生矩阵(GLCM)来获取火灾。然后用三个参数来评估模型的性能,这三个参数包括准确率、召回率、精确度。本研究的数据包括火灾和非火灾视频的变化。根据最终的研究结果,准确度、记性、最佳精密度同时获得96%、97%、97%。然后使用30个视频进行验证过程,其中15个是火灾视频,15个是非火灾视频,准确率为86.6%,平均时间值为6.029分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deteksi Api Pada Video Menggunakan Metode Artificial Neural Network
Abstract The camera is one of the tools used to collect images. Cameras are often used for the safety of homes, highways and others. Then in this study camera captures are used to support fire objects because fire is one of the causes of safety that can be controlled. Therefore, by utilizing a capture camera will see the best model of backpropagation neural network by combining the local binary patern (LBP) feature extraction method and the Gray Level Co-occurrence Matrix (GLCM) to access the fire. Then to evaluate the performance of the model created using three parameters that contain accuracy, recall, precision. The data in this study consisted of videos with variations of fire and non-fire videos. Based on the final results of the study, accuracy, remember, the best precision obtained simultaneously 96%, 97%, 97%. Then the validation process was done using 30 videos with a variation of 15 fire videos and 15 non-fire videos and obtained an accuracy of 86.6% with an average time value of 6.029 minutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信