Twitter话题内用户与消息聚类的模式检测研究

M. Cheong, V. Lee
{"title":"Twitter话题内用户与消息聚类的模式检测研究","authors":"M. Cheong, V. Lee","doi":"10.1109/ICPR.2010.765","DOIUrl":null,"url":null,"abstract":"Timely detection of hidden patterns is the key for the analysis and estimating of driving determinants for mission critical decision making. This study applies Cheong and Lee’s “context-aware” content analysis framework to extract latent properties from Twitter messages (tweets). In addition, we incorporate an unsupervised Self-organizing Feature Map (SOM) as a machine learning-based clustering tool that has not been investigated in the context of opinion mining and sentimental analysis using microblogging. Our experimental results reveal the detection of interesting patterns for topics of interest which are latent and cannot be easily detected from the observed tweets without the aid of machine learning tools.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"A Study on Detecting Patterns in Twitter Intra-topic User and Message Clustering\",\"authors\":\"M. Cheong, V. Lee\",\"doi\":\"10.1109/ICPR.2010.765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timely detection of hidden patterns is the key for the analysis and estimating of driving determinants for mission critical decision making. This study applies Cheong and Lee’s “context-aware” content analysis framework to extract latent properties from Twitter messages (tweets). In addition, we incorporate an unsupervised Self-organizing Feature Map (SOM) as a machine learning-based clustering tool that has not been investigated in the context of opinion mining and sentimental analysis using microblogging. Our experimental results reveal the detection of interesting patterns for topics of interest which are latent and cannot be easily detected from the observed tweets without the aid of machine learning tools.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

及时发现隐藏模式是关键任务决策的驱动决定因素分析和估计的关键。本研究应用Cheong和Lee的“上下文感知”内容分析框架从Twitter消息(tweets)中提取潜在属性。此外,我们将无监督自组织特征映射(SOM)作为基于机器学习的聚类工具,该工具尚未在使用微博进行意见挖掘和情感分析的背景下进行研究。我们的实验结果揭示了对感兴趣主题的有趣模式的检测,这些主题是潜在的,如果没有机器学习工具的帮助,无法从观察到的tweet中轻松检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Detecting Patterns in Twitter Intra-topic User and Message Clustering
Timely detection of hidden patterns is the key for the analysis and estimating of driving determinants for mission critical decision making. This study applies Cheong and Lee’s “context-aware” content analysis framework to extract latent properties from Twitter messages (tweets). In addition, we incorporate an unsupervised Self-organizing Feature Map (SOM) as a machine learning-based clustering tool that has not been investigated in the context of opinion mining and sentimental analysis using microblogging. Our experimental results reveal the detection of interesting patterns for topics of interest which are latent and cannot be easily detected from the observed tweets without the aid of machine learning tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信