{"title":"水电厂线性参数变控制框架","authors":"Muhittin Yilmaz, A. V. Kamalapur","doi":"10.1109/GREENTECH.2014.25","DOIUrl":null,"url":null,"abstract":"This paper presents a Linear Parameter Varying (LPV) control methodology for a hydro power plant for potentially superior smart grid implementations. The hydro power plant is assumed to be decomposable to its subsystems whose characteristics may involve different dynamical behaviors related to a real-time time-varying parameter that can be measurable in future periods. The nonlinear hydro plant dynamics are expressed in terms of a polytopic parameter-dependent model to efficiently characterize the plant dynamical changes, and the associated LPV controller synthesis perspectives are detailed. The LPV model closed loop controller synthesis and simulation results illustrate the effectiveness of the framework for nonlinear power plant optimization.","PeriodicalId":194092,"journal":{"name":"2014 Sixth Annual IEEE Green Technologies Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hydro Power Plant Linear Parameter Varying Control Framework\",\"authors\":\"Muhittin Yilmaz, A. V. Kamalapur\",\"doi\":\"10.1109/GREENTECH.2014.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Linear Parameter Varying (LPV) control methodology for a hydro power plant for potentially superior smart grid implementations. The hydro power plant is assumed to be decomposable to its subsystems whose characteristics may involve different dynamical behaviors related to a real-time time-varying parameter that can be measurable in future periods. The nonlinear hydro plant dynamics are expressed in terms of a polytopic parameter-dependent model to efficiently characterize the plant dynamical changes, and the associated LPV controller synthesis perspectives are detailed. The LPV model closed loop controller synthesis and simulation results illustrate the effectiveness of the framework for nonlinear power plant optimization.\",\"PeriodicalId\":194092,\"journal\":{\"name\":\"2014 Sixth Annual IEEE Green Technologies Conference\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Sixth Annual IEEE Green Technologies Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GREENTECH.2014.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Sixth Annual IEEE Green Technologies Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENTECH.2014.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hydro Power Plant Linear Parameter Varying Control Framework
This paper presents a Linear Parameter Varying (LPV) control methodology for a hydro power plant for potentially superior smart grid implementations. The hydro power plant is assumed to be decomposable to its subsystems whose characteristics may involve different dynamical behaviors related to a real-time time-varying parameter that can be measurable in future periods. The nonlinear hydro plant dynamics are expressed in terms of a polytopic parameter-dependent model to efficiently characterize the plant dynamical changes, and the associated LPV controller synthesis perspectives are detailed. The LPV model closed loop controller synthesis and simulation results illustrate the effectiveness of the framework for nonlinear power plant optimization.