金属纳米颗粒与多原子醇的界面能

L. Aref`eva, I. G. Shebzukhova
{"title":"金属纳米颗粒与多原子醇的界面能","authors":"L. Aref`eva, I. G. Shebzukhova","doi":"10.18127/j22250999-201902-01","DOIUrl":null,"url":null,"abstract":"The interface energy is general factor, which has determined the critical size and equilibrium shape of nanoparticles, velocity of its growth and stability. The electron-statistical method, based on the Thomas-Fermi theory taking into account its current state, allows one to calculate the interfacial energy of metallic objects of different dimensions at the boundary with various media. Based on this method, we have developed a variant for calculating the interfacial energy of the system « low-dimensional metallic phase - polar dielectric film». The polyatomic alcohols (diols), used, for example, as non-aqueous media for the synthesis of metal nanoparticles, were chosen as the external medium. Also we have chosen cobalt nanocrystals as a low-dimensional metallic phase. Expressions are obtained for the external and internal contributions to the interfacial energy of the system, including the polarization correction, due to the presence of a dielectric fluid in the external region of the system. The effect of a limited dielectric fluid layer on the Gibbs boundary coordinate is analyzed. The presence of a dielectric leads to a shift of the Gibbs boundary to the external region of the system, that is, the so-called effect of «pulling the tail» of the electron density is observed. It is shown that with increasing dielectric constant, the magnitude of the polarization contribution increases rapidly in magnitude. The interface energy of a cobalt nanocrystal at the interface with polar polyatomic alcohols is calculated. The interfacial energy of the faces of cobalt nanocrystals decreases nonlinearly with an increase in the linear dimensions of the metal phase. It is shown that the dielectric coating changes the character of the dimensional and orientational dependence in comparison with the interfacial energy of macrocrystals and thin films at the interface with vacuum. With a constant size of the metal phase and an increase in the thickness of the dielectric coating, the interface energy of faces and anisotropy increase. It has been established that 1,2-ethanediol is the most effective surfactant for cobalt particles of the polyatomic alcohols considered in this paper. The dependencies obtained in this work are consistent with the literature data for the thin films of alkaline metals and other system.","PeriodicalId":299896,"journal":{"name":"Nanotechnology : the development , application - XXI Century","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interfacial energy of metallic nanoparticles on the boundary with polyatomic alcohols\",\"authors\":\"L. Aref`eva, I. G. Shebzukhova\",\"doi\":\"10.18127/j22250999-201902-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interface energy is general factor, which has determined the critical size and equilibrium shape of nanoparticles, velocity of its growth and stability. The electron-statistical method, based on the Thomas-Fermi theory taking into account its current state, allows one to calculate the interfacial energy of metallic objects of different dimensions at the boundary with various media. Based on this method, we have developed a variant for calculating the interfacial energy of the system « low-dimensional metallic phase - polar dielectric film». The polyatomic alcohols (diols), used, for example, as non-aqueous media for the synthesis of metal nanoparticles, were chosen as the external medium. Also we have chosen cobalt nanocrystals as a low-dimensional metallic phase. Expressions are obtained for the external and internal contributions to the interfacial energy of the system, including the polarization correction, due to the presence of a dielectric fluid in the external region of the system. The effect of a limited dielectric fluid layer on the Gibbs boundary coordinate is analyzed. The presence of a dielectric leads to a shift of the Gibbs boundary to the external region of the system, that is, the so-called effect of «pulling the tail» of the electron density is observed. It is shown that with increasing dielectric constant, the magnitude of the polarization contribution increases rapidly in magnitude. The interface energy of a cobalt nanocrystal at the interface with polar polyatomic alcohols is calculated. The interfacial energy of the faces of cobalt nanocrystals decreases nonlinearly with an increase in the linear dimensions of the metal phase. It is shown that the dielectric coating changes the character of the dimensional and orientational dependence in comparison with the interfacial energy of macrocrystals and thin films at the interface with vacuum. With a constant size of the metal phase and an increase in the thickness of the dielectric coating, the interface energy of faces and anisotropy increase. It has been established that 1,2-ethanediol is the most effective surfactant for cobalt particles of the polyatomic alcohols considered in this paper. The dependencies obtained in this work are consistent with the literature data for the thin films of alkaline metals and other system.\",\"PeriodicalId\":299896,\"journal\":{\"name\":\"Nanotechnology : the development , application - XXI Century\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology : the development , application - XXI Century\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18127/j22250999-201902-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology : the development , application - XXI Century","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18127/j22250999-201902-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

界面能是决定纳米颗粒临界尺寸、平衡形状、生长速度和稳定性的一般因素。基于托马斯-费米理论的电子统计方法考虑了其当前状态,可以计算不同尺寸的金属物体在不同介质边界处的界面能。基于这种方法,我们开发了一种计算“低维金属相-极性介电膜”系统界面能的变体。例如,用作合成金属纳米粒子的非水介质的多原子醇(diols)被选为外部介质。此外,我们还选择了钴纳米晶体作为低维金属相。得到了由于介电流体在系统外部区域的存在而导致的系统界面能的外部和内部贡献的表达式,包括极化校正。分析了有限介电流体层对Gibbs边界坐标的影响。电介质的存在导致吉布斯边界向系统外部区域移动,即观察到所谓的电子密度“拉尾”效应。结果表明,随着介电常数的增大,极化贡献的幅度迅速增大。计算了钴纳米晶体与极性多原子醇的界面能。钴纳米晶体的界面能随金属相线性尺寸的增加呈非线性降低。结果表明,与真空界面上的大晶体和薄膜的界面能相比,介质涂层改变了界面能的尺寸依赖性和取向依赖性。随着金属相尺寸的恒定和介质涂层厚度的增加,界面能和各向异性增大。结果表明,1,2-乙二醇是本文所考虑的多原子醇中钴颗粒最有效的表面活性剂。所得的依赖关系与文献中碱金属薄膜和其他体系的相关数据一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interfacial energy of metallic nanoparticles on the boundary with polyatomic alcohols
The interface energy is general factor, which has determined the critical size and equilibrium shape of nanoparticles, velocity of its growth and stability. The electron-statistical method, based on the Thomas-Fermi theory taking into account its current state, allows one to calculate the interfacial energy of metallic objects of different dimensions at the boundary with various media. Based on this method, we have developed a variant for calculating the interfacial energy of the system « low-dimensional metallic phase - polar dielectric film». The polyatomic alcohols (diols), used, for example, as non-aqueous media for the synthesis of metal nanoparticles, were chosen as the external medium. Also we have chosen cobalt nanocrystals as a low-dimensional metallic phase. Expressions are obtained for the external and internal contributions to the interfacial energy of the system, including the polarization correction, due to the presence of a dielectric fluid in the external region of the system. The effect of a limited dielectric fluid layer on the Gibbs boundary coordinate is analyzed. The presence of a dielectric leads to a shift of the Gibbs boundary to the external region of the system, that is, the so-called effect of «pulling the tail» of the electron density is observed. It is shown that with increasing dielectric constant, the magnitude of the polarization contribution increases rapidly in magnitude. The interface energy of a cobalt nanocrystal at the interface with polar polyatomic alcohols is calculated. The interfacial energy of the faces of cobalt nanocrystals decreases nonlinearly with an increase in the linear dimensions of the metal phase. It is shown that the dielectric coating changes the character of the dimensional and orientational dependence in comparison with the interfacial energy of macrocrystals and thin films at the interface with vacuum. With a constant size of the metal phase and an increase in the thickness of the dielectric coating, the interface energy of faces and anisotropy increase. It has been established that 1,2-ethanediol is the most effective surfactant for cobalt particles of the polyatomic alcohols considered in this paper. The dependencies obtained in this work are consistent with the literature data for the thin films of alkaline metals and other system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信