嵌入式字段的可扩展网络编码

Hanqi Tang, Ruobin Zheng, Zongpeng Li, Q. T. Sun
{"title":"嵌入式字段的可扩展网络编码","authors":"Hanqi Tang, Ruobin Zheng, Zongpeng Li, Q. T. Sun","doi":"10.1109/iccc52777.2021.9580416","DOIUrl":null,"url":null,"abstract":"In complex network environments, there always exist heterogeneous devices with different computational powers. In this work, we propose a novel scalable random linear network coding (RLNC) framework based on a chain of embedded fields, so as to endow heterogeneous receivers with different decoding capabilities. In this framework, the source linearly combines the original packets over embedded fields in an encoding matrix and then combines the coded packets over GF(2) before transmission to the network. Based on the arithmetic compatibility over embedded fields in the encoding process, we derive a sufficient and necessary condition for decodability over these fields of different sizes. Moreover, we theoretically study the construction of an optimal encoding matrix in terms of decodability. The numerical analysis in classical wireless broadcast networks illustrates that the proposed scalable RLNC not only provides a nice decoding compatibility over different fields, but also performs better than classical RLNC in terms of decoding complexity.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scalable Network Coding over Embedded Fields\",\"authors\":\"Hanqi Tang, Ruobin Zheng, Zongpeng Li, Q. T. Sun\",\"doi\":\"10.1109/iccc52777.2021.9580416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In complex network environments, there always exist heterogeneous devices with different computational powers. In this work, we propose a novel scalable random linear network coding (RLNC) framework based on a chain of embedded fields, so as to endow heterogeneous receivers with different decoding capabilities. In this framework, the source linearly combines the original packets over embedded fields in an encoding matrix and then combines the coded packets over GF(2) before transmission to the network. Based on the arithmetic compatibility over embedded fields in the encoding process, we derive a sufficient and necessary condition for decodability over these fields of different sizes. Moreover, we theoretically study the construction of an optimal encoding matrix in terms of decodability. The numerical analysis in classical wireless broadcast networks illustrates that the proposed scalable RLNC not only provides a nice decoding compatibility over different fields, but also performs better than classical RLNC in terms of decoding complexity.\",\"PeriodicalId\":425118,\"journal\":{\"name\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccc52777.2021.9580416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在复杂的网络环境中,总是存在计算能力不同的异构设备。在这项工作中,我们提出了一种新的基于嵌入式字段链的可扩展随机线性网络编码(RLNC)框架,从而赋予异构接收器不同的解码能力。在这个框架中,源在编码矩阵中对嵌入字段的原始数据包进行线性组合,然后在传输到网络之前通过GF(2)对编码数据包进行组合。基于编码过程中对嵌入域的算术兼容性,我们推导了不同大小的嵌入域可译码的充要条件。此外,我们从理论上研究了最优编码矩阵的可解码性构造。在经典无线广播网络中的数值分析表明,所提出的可扩展RLNC不仅在不同领域具有良好的解码兼容性,而且在解码复杂度方面优于经典RLNC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Network Coding over Embedded Fields
In complex network environments, there always exist heterogeneous devices with different computational powers. In this work, we propose a novel scalable random linear network coding (RLNC) framework based on a chain of embedded fields, so as to endow heterogeneous receivers with different decoding capabilities. In this framework, the source linearly combines the original packets over embedded fields in an encoding matrix and then combines the coded packets over GF(2) before transmission to the network. Based on the arithmetic compatibility over embedded fields in the encoding process, we derive a sufficient and necessary condition for decodability over these fields of different sizes. Moreover, we theoretically study the construction of an optimal encoding matrix in terms of decodability. The numerical analysis in classical wireless broadcast networks illustrates that the proposed scalable RLNC not only provides a nice decoding compatibility over different fields, but also performs better than classical RLNC in terms of decoding complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信