单变量格值逻辑的代数语义

P. Cintula, G. Metcalfe, N. Tokuda
{"title":"单变量格值逻辑的代数语义","authors":"P. Cintula, G. Metcalfe, N. Tokuda","doi":"10.48550/arXiv.2209.08566","DOIUrl":null,"url":null,"abstract":"The one-variable fragment of any first-order logic may be considered as a modal logic, where the universal and existential quantifiers are replaced by a box and diamond modality, respectively. In several cases, axiomatizations of algebraic semantics for these logics have been obtained: most notably, for the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and intuitionistic logic, respectively. Outside the setting of first-order intermediate logics, however, a general approach is lacking. This paper provides the basis for such an approach in the setting of first-order lattice-valued logics, where formulas are interpreted in algebraic structures with a lattice reduct. In particular, axiomatizations are obtained for modal counterparts of one-variable fragments of a broad family of these logics by generalizing a functional representation theorem of Bezhanishvili and Harding for monadic Heyting algebras. An alternative proof-theoretic proof is also provided for one-variable fragments of first-order substructural logics that have a cut-free sequent calculus and admit a certain bounded interpolation property.","PeriodicalId":129696,"journal":{"name":"Advances in Modal Logic","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic semantics for one-variable lattice-valued logics\",\"authors\":\"P. Cintula, G. Metcalfe, N. Tokuda\",\"doi\":\"10.48550/arXiv.2209.08566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The one-variable fragment of any first-order logic may be considered as a modal logic, where the universal and existential quantifiers are replaced by a box and diamond modality, respectively. In several cases, axiomatizations of algebraic semantics for these logics have been obtained: most notably, for the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and intuitionistic logic, respectively. Outside the setting of first-order intermediate logics, however, a general approach is lacking. This paper provides the basis for such an approach in the setting of first-order lattice-valued logics, where formulas are interpreted in algebraic structures with a lattice reduct. In particular, axiomatizations are obtained for modal counterparts of one-variable fragments of a broad family of these logics by generalizing a functional representation theorem of Bezhanishvili and Harding for monadic Heyting algebras. An alternative proof-theoretic proof is also provided for one-variable fragments of first-order substructural logics that have a cut-free sequent calculus and admit a certain bounded interpolation property.\",\"PeriodicalId\":129696,\"journal\":{\"name\":\"Advances in Modal Logic\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Modal Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.08566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Modal Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.08566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

任何一阶逻辑的单变量片段都可以被认为是模态逻辑,其中全称量词和存在量词分别被盒子和菱形模态取代。在一些情况下,已经获得了这些逻辑的代数语义的公理化:最值得注意的是,一阶经典逻辑和直觉逻辑的单变量片段的模态对偶S5和MIPC。然而,在一阶中间逻辑的设置之外,缺乏一般的方法。本文在一阶格值逻辑的设置中提供了这种方法的基础,其中公式在具有格约化的代数结构中被解释。特别地,通过推广一元Heyting代数的Bezhanishvili和Harding的泛函表示定理,得到了这些逻辑的广义族的单变量片段的模态对偶的公理化。对于一阶子结构逻辑中具有无切序演算且具有一定有界插值性质的单变量片段,给出了另一种证明理论证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic semantics for one-variable lattice-valued logics
The one-variable fragment of any first-order logic may be considered as a modal logic, where the universal and existential quantifiers are replaced by a box and diamond modality, respectively. In several cases, axiomatizations of algebraic semantics for these logics have been obtained: most notably, for the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and intuitionistic logic, respectively. Outside the setting of first-order intermediate logics, however, a general approach is lacking. This paper provides the basis for such an approach in the setting of first-order lattice-valued logics, where formulas are interpreted in algebraic structures with a lattice reduct. In particular, axiomatizations are obtained for modal counterparts of one-variable fragments of a broad family of these logics by generalizing a functional representation theorem of Bezhanishvili and Harding for monadic Heyting algebras. An alternative proof-theoretic proof is also provided for one-variable fragments of first-order substructural logics that have a cut-free sequent calculus and admit a certain bounded interpolation property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信